Ref: Chapter 4 of [EK] text.

Note: We present the methodology for tracking the formation of new links under **triadic closure**. This methodology was used in the 2006 study by Kossinets and Watts (reference [259] in the text).

Steps of the Methodology:

1. Consider two snapshots N_1 and N_2 of a social network at times t_1 and t_2 respectively, where $t_1 < t_2$.

2. For each value of k, let S_k denote the set of pairs of nodes $\{x, y\}$ such that x and y have exactly k common neighbors in N_1, but the edge (link) $\{x, y\}$ is not in N_1. (For some k, if S_k is empty, ignore set S_k.)

3. For each set S_k found in Step 2, let Q_k denote the subset of S_k such that for each pair $\{x, y\}$ in Q_k, the edge (link) $\{x, y\}$ is in N_2. For each value of k, compute the ratio $T(k) = |Q_k|/|S_k|$.

 Note: $T(k)$ is an empirical estimate of the probability that a link will form between two people who have exactly k common friends.

4. Plot $T(k)$ against k. (We expect $T(k)$ to increase with k.)

 Note: $T(0)$ represents the probability of link formation when two people have no common friend. So, a comparison of the value of $T(0)$ with other values addresses the basic questions about triadic closure.