NOTE: SOME MATERIAL ON TWO-SAMPLE TESTS FOR PROPORTIONS IS FROM CHAPTER 10 IN ROSNER (NOT CHAPTER 8)
PREVIOUSLY

- estimation

 how can a sample be used to estimate the unknown parameters of a population

 use confidence intervals around point estimates of central tendency (mean) and variability (variance, standard deviation)
• hypothesis testing, single sample

does a population parameter estimated from sample data differ from some claimed value

almost always results in the same answer as confidence intervals - exception possible with proportions due to difference in how standard errors are calculated in hypothesis testing versus confidence intervals

• in either case, make a statement about a single parameter estimated from sample data
NEW QUESTION

• test a claim about two parameters, both estimated with sample data

• Rosner - underlying parameters of two different populations, neither of whose values are known, are compared

• more frequently encountered than one sample hypothesis testing
Example from Rosner - what is the relationship between oral contraceptive (OC) use and the level of blood pressure (BP) in women - two different approaches ...

LONGITUDINAL STUDY

- identify a group of non-pregnant, pre-menopausal women of childbearing age who are not OC users and measure their BP (baseline value)

- rescreen the women after one year and find all the women who remained non-pregnant throughout the year and who have become OC users - this is the study population

- measure the BP of the women in the study population and compare the values to the baseline values (two groups of the same women, measuring BP at two different times)
CROSS-SECTIONAL STUDY

- identify two groups of non-pregnant, pre-menopausal women of childbearing age, one of OC users and another that does not use OC, measure their BP

- compare the BP of the OC users and non-users (two groups of different women, measuring BP at the same time)
LONGITUDINAL STUDY

- same group of people followed over time

- paired-sample design - each person within the group serves as his/her own control

- also possible to have measurements on two different people who have been matched to each other based on criteria such as age and sex

- the two samples are NOT independent
CROSS-SECTIONAL STUDY

• different groups of people

• the two sample are INDEPENDENT
WHAT TYPE OF STUDY IS BETTER FOR OC AND BP

• longitudinal helps to rule out other factors (confounders) that might also influence BP

• harder to rule out other factors in a cross-sectional study (statistical methods often used for adjustment)

• IMPORTANT to remember that different statistical methods are used to test for differences in NON-INDEPENDENT versus INDEPENDENT data
INDEPENDENT SAMPLES

- proportions

Proportions are based on data from two random samples that are independent (values in one sample are not related to values in the other), examples 10.1 and 10.2 in Rosner ...

Compare the ovarian cancer rates between a group of "light OC users" (used OC for less than 5 years) and a group of "heavy OC users" (used OC for 5+ years)

Triola... for each sample, the NUMBER of successes and failures is at least 5 (same as saying NP ≥ 5 and NQ ≥ 5)

Rosner... for each sample, NPQ ≥ 5 (normal approximation to the binomial)
Two-sample test for proportions (normal-theory)...

\[
z = \frac{((\hat{p}_1 - \hat{p}_2) - (p_1 - p_2))}{\sqrt{\left(\frac{\bar{p} \bar{q}}{n_1}\right) + \left(\frac{\bar{p} \bar{q}}{n_2}\right)}}
\]

with a null hypothesis...

\[H_0: p_1 = p_2\]

reduces to...

\[
z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\bar{p} \bar{q}((1/n_1) + (1/n_2))}}
\]

where...

\[
\bar{p} = \frac{x_1 + x_2}{n_1 + n_2}
\]

\[
\bar{q} = 1 - \bar{p}
\]
Example from Rosner - what is the relationship between oral contraceptive (OC) use and heart disease in women... cross-sectional study ... example 10.6 ...

among women 40-44 years of age...

13 of 5,000 OC users have an MI over a 3-year period
7 of 10,000 non-OC users have an MI over a 3-year period
• given a claim...

OC use is related to occurrence of MI

• identify the null hypothesis...

the rate of MI occurrence is the same among OC and non-OC users

• identify the alternative hypothesis...

the rate of MI occurrence is not the same among OC and non-OC users
• express the null and alternative hypothesis is symbolic form...

\[H_0: p_1 = p_2 \]
\[H_1: p_1 \neq p_2 \]

• given a claim and sample data, calculate the value of the test statistic...

\[\bar{p} = \frac{(x_1 + x_2)}{(n_1 + n_2)} = \frac{(13 + 7)}{(5000 + 10000)} = 0.00133 \]
\[\hat{p}_1 = \frac{x_1}{n_1} = \frac{13}{5000} = 0.0026 \]
\[\hat{p}_2 = \frac{x_2}{n_2} = \frac{7}{10000} = 0.0007 \]

\[z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\bar{p}(1-\bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \]
\[z = \frac{(0.0026 - 0.0007)}{\sqrt{(0.00133)(0.99867)(\frac{1}{5000} + \frac{1}{10000})}} \]
\[z = 0.0019/.00063 = 3.02 \]
• given a significance level, identify the critical value(s)...

normal distribution, $\alpha = .05$, 2-tail test

from table A-2 in Triola, critical value = 1.96

• given a value of the test statistic, identify the P-value...

in the normal distribution, what is the probability of obtaining the value of the test statistic 3.02

in table A-2 in Triola, P-value = 0.0013

two-tail test, double the P-value, 0.0026
• state the conclusion of the hypothesis is simple, non-technical terms...

 reject the null hypothesis
 OC use is associated with MI occurrence

• identify the type I and type II errors that can be made when testing a given claim...

 type I error determined by choice of α, in this case, 0.05
 type II error (calculated using web site), 0.19
• NOTE: Rosner uses a continuity correction in the numerator of the equation used to calculate the value of the test statistic...

\[(\hat{p}_1 - \hat{p}_2) - ((1/2n_1) + (1/2n_2))\]
\[(0.0026 - 0.0007) - ((1/2(5000)) + (1/2(10000)))\]
\[(0.0026 - 0.0007) - ((1/10000) + (1/20000)) = 0.00175\]

applying the continuity correction leads to \(z=2.77\) (not 3.02)
• compute a confidence interval for the difference between the two proportions

the pooled estimate of p is NOT used in calculating the margin of error...

\[E = z_{\alpha/2} \sqrt{\left(\frac{\hat{p}_1\hat{q}_1}{n_1}\right) + \left(\frac{\hat{p}_2\hat{q}_2}{n_2}\right)} \]

\[E = 1.96 / \sqrt{\left(\frac{(0.0026)(0.9974)}{5000}\right) + \left(\frac{(0.0007)(0.9993)}{10000}\right)} \]

\[E = 0.0015 \]

confidence interval...

\[(\hat{p}_1 - \hat{p}_2) - E < (p_1 - p_2) < (\hat{p}_1 - \hat{p}_2) + E \]

\[(0.0026 - 0.0007) - 0.0015 < (p_1 - p_2) < (0.0026 - 0.0007) + 0.0015 \]

\[0.0004 < (p_1 - p_2) < 0.0034 \]

same conclusion as hypothesis test since 0 is outside the band
• compute a confidence band on both proportions and see if the bands overlap...

\[E_1 = z_{\alpha/2} \sqrt{\hat{p}_1 \hat{q}_1 / n_1} \]
\[E_1 = 1.96 \sqrt{(0.0026)(0.9974) / 5000} = 0.0014 \]
\[\hat{p}_1 - E_1 < p_1 < \hat{p}_1 + E_1 = 0.0026 - 0.0014 < p_1 < 0.0026 + 0.0014 \]
\[0.0012 < p_1 < 0.0040 \]
\[E_2 = z_{\alpha/2} \sqrt{\hat{p}_2 \hat{q}_2 / n_2} \]
\[E_2 = 1.96 \sqrt{(0.0007)(0.9993) / 10000} = 0.0005 \]
\[\hat{p}_2 - E_2 < p_2 < \hat{p}_2 + E_2 = 0.0007 - 0.0005 < p_2 < 0.0007 + 0.0005 \]
\[0.0002 < p_2 < 0.0012 \]

Confidence bands "close" to overlap (actually do overlap with less rounding of the values) --- "...rejection of the null hypothesis by the method of overlap implies rejection by the standard method, whereas failure to reject...does NOT imply failure to reject by the standard method..." --- more conservative, less powerful method.
NON-INDEPENDENT SAMPLES

- from chapter 10 in Triola, McNemar's Test for matched-pairs
- previous method inappropriate for matched data
- test statistic is now χ^2, not z
- 2x2 table used to display results
- used when subjects serve as their own controls or when different subjects are matched on one or more factors thought to be related to the outcome of interest
- analysis dependent on concordant and discordant pairs
Modified example from Rosner (example 10.25) ... 22 patients have their blood pressure evaluated by both a computerized device and the standard method (a person) ... the results look as follows with... H-hypertensive, N-normal BP

<table>
<thead>
<tr>
<th>person</th>
<th>computer</th>
<th>standard</th>
<th>person</th>
<th>computer</th>
<th>standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>N</td>
<td>12</td>
<td>H</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>N</td>
<td>13</td>
<td>H</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>N</td>
<td>14</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>H</td>
<td>15</td>
<td>H</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>N</td>
<td>16</td>
<td>N</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>N</td>
<td>17</td>
<td>H</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>N</td>
<td>18</td>
<td>H</td>
<td>N</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>H</td>
<td>19</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>H</td>
<td>20</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>10</td>
<td>N</td>
<td>N</td>
<td>21</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>N</td>
<td>22</td>
<td>N</td>
<td>H</td>
</tr>
</tbody>
</table>
• question… are results different from the computer versus the person

• wrong approach… compute proportion of hypertensive found by each method…

\[p(\text{computer}) = \frac{11}{22} = 0.50 \]
\[p(\text{standard}) = \frac{5}{22} = 0.23 \]

and compare with method shown for independent samples (looks as if there are 44 subjects, 22 in each group)

• correct approach… McNemar's Test
- general...

<table>
<thead>
<tr>
<th>method 1</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>concordant</td>
<td>discordant</td>
</tr>
<tr>
<td>no</td>
<td>discordant</td>
<td>concordant</td>
</tr>
</tbody>
</table>

- specific...

<table>
<thead>
<tr>
<th>computer</th>
<th>standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
</tr>
</tbody>
</table>
• requirements for using McNemar's Test

 same issues as to sampling as before (random, representative)

 sample data comprise matched-pairs

 data are at a nominal level of measurement and each observation can be classified in two-ways (in the example... method used, BP category)

 number of discordant pairs \(\geq 10 \) (Rosner... \(\geq 20 \)), otherwise an exact method must be used

• test statistic is \(\chi^2 \)

• critical value located in right tail only with 1 degree of freedom
• claim... the two methods produce identical results

• null hypothesis... $H_0: p_1 = p_2$
 $H_1: p_1 \neq p_2$

• test statistic... $\chi^2 = \frac{|b - c| - 1}{b + c}$
 $\chi^2 = \frac{|8 - 2| - 1}{8 + 2} = 2.5$

• critical value... with $\alpha=0.05$, 1 DF (table A-4), 3.841

• P-value... hard to determine from table in Triola
 use other tables (Rosner), or software
 from Statcrunch, P-value $= 0.1138$

• conclusion... fail to reject the null hypothesis
 no evidence to say the methods differ
• exact method (when number of discordant pairs < 10, but also works anytime)

• based on exact binomial probabilities

if na = number of discordant pairs in which the group A member has the event and the group B member does not

if nd = total number of discordant pairs

binomial with \(p=0.5, n=nd, k=na \)
if \(na<nd/2 \), \(p = 2 \times \text{probability of } k \text{ events or less} \)
if \(na>nd/2 \), \(p = 2 \times \text{probability of } k \text{ events or more} \)
if \(na=nd/2 \), \(p = 1 \)
• change the previous problem...

<table>
<thead>
<tr>
<th></th>
<th>standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
</tr>
</tbody>
</table>

• number of discordant pairs = 10

• na = 7, nd = 8, na>nd/2 (7 > 4)
 binomial with p=0.5, n=8, k=7
 p of k or more events = 0.03515
 exact p-value = 2 x 0.03515 = 0.0703
• previous problem

\(na = 8, \ nd = 10, \ na > n/2 \ (8 > 5) \)

binomial with \(p=0.5, \ n=10, \ k=8 \)

\(p \) of \(k \) or more events = 0.05468

exact \(p \)-value = 2 x 0.05468 = 0.1093

using SAS, same answer... exact = 0.1094

<table>
<thead>
<tr>
<th>COMPUTER</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

Statistics for Table of COMPUTER by STANDARD

McNemar’s Test

<table>
<thead>
<tr>
<th>Statistic (S)</th>
<th>3.6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>1</td>
</tr>
<tr>
<td>Asymptotic Pr > S</td>
<td>0.0578</td>
</tr>
<tr>
<td>Exact Pr >= S</td>
<td>0.1094</td>
</tr>
</tbody>
</table>
another type of matching, not same subjects...

eexample from Rosner (example 10.21) ... compare two different regimens of chemotherapy for breast cancer after mastectomy... matched study using two groups of women where pairs of women are matched on age and clinical condition... random member of each pair gets treatment A, other gets treatment B... outcome measure is survival at the end of 5 years of follow up

621 pairs (1242 women)
526 (p=0.847) in group A survive
515 (p=0.829) in group B survive
- table with matched pairs...

<table>
<thead>
<tr>
<th></th>
<th>treatment A</th>
<th>treatment B</th>
</tr>
</thead>
<tbody>
<tr>
<td>survived</td>
<td>510</td>
<td>16</td>
</tr>
<tr>
<td>died</td>
<td>5</td>
<td>90</td>
</tr>
</tbody>
</table>
• claim... the two methods produce identical results

• null hypothesis... $H_0: p_1 = p_2$
 $H_1: p_1 \neq p_2$

• test statistic... $\chi^2 = \frac{(|b - c| - 1)^2}{(b + c)}$
 $\chi^2 = \frac{(|16 - 5| - 1)^2}{(16 + 5)} = 4.76$

• critical value... with $\alpha = 0.05$, 1 DF (table A-4), 3.841

• P-value... 4.76 between 3.841 (p=0.05) and 5.024 (p=0.025) in Triola table A-4, or from Statcrunch, P-value = 0.029

• conclusion... reject the null hypothesis
 survival different for different treatments
MATCHED PAIRS

- continuous data

- test statistic is t

- requirements

 same issues as to sampling as before (random, representative)

 sample data comprise matched pairs

 either or both conditions: number of matched pairs > 30;
 distribution of differences between matched pairs is
 approximately normally distributed
Example from Rosner... matched pairs, same person...

blood pressure measurements taken on both the left and right arms of 10 subjects... are the measurements comparable

<table>
<thead>
<tr>
<th>subject</th>
<th>left</th>
<th>right</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130</td>
<td>126</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>124</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>135</td>
<td>127</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>102</td>
<td>-4</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>109</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>123</td>
<td>124</td>
<td>-1</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>132</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>140</td>
<td>137</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>155</td>
<td>156</td>
<td>-1</td>
</tr>
</tbody>
</table>
• claim... measurements on the two arms produce identical results

• null hypothesis... $H_0: \mu_d = 0$
 $H_1: \mu_d \neq 0$

• test statistic... $t = \bar{d} / (s_d / \sqrt{n})$
 $t = 1.50 / (3.979 / \sqrt{10}) = 1.19$

• critical value... with $\alpha = 0.05$, 9 DF, two-tails (table A-3), 2.262

• P-value... hard to determine from table in Triola
 use other tables (Rosner), or software from Statcrunch, P-value = 0.264

• conclusion... fail to reject the null hypothesis
 no evidence to say the BP differs from one arm to the other
• confidence interval for matched pairs

\[E = t_{\alpha/2}(s_d / \sqrt{n}) \]

\[E = 2.262(3.979 / \sqrt{10}) = 2.85 \]

\[\bar{d} - E < \mu_d < \bar{d} + E \]

\[1.50 - 2.85 < \mu_d < 1.50 + 2.85 \]

\[-1.35 < \mu_d < 4.35 \]

same conclusion as hypothesis test since zero (no difference) is within the confidence band
Example from Rosner... matched pairs, different persons...

30 pregnant women, 15 matched pairs (age and weight as matching criteria, women are within 5 pounds of each other and within 2 years of age), member of each pair randomly assigned to a drug or placebo to see if the drug is effective in reducing premature births (outcome measure is birth weight, in pounds)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Treatment</th>
<th>Control</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.9</td>
<td>6.4</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>7.6</td>
<td>6.7</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>7.3</td>
<td>5.4</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>7.6</td>
<td>8.2</td>
<td>-0.6</td>
</tr>
<tr>
<td>5</td>
<td>6.8</td>
<td>5.3</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>7.2</td>
<td>6.6</td>
<td>0.6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>5.8</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>5.5</td>
<td>5.7</td>
<td>-0.2</td>
</tr>
<tr>
<td>9</td>
<td>5.8</td>
<td>6.2</td>
<td>-0.4</td>
</tr>
<tr>
<td>10</td>
<td>7.3</td>
<td>7.1</td>
<td>0.2</td>
</tr>
<tr>
<td>11</td>
<td>8.2</td>
<td>7.0</td>
<td>1.2</td>
</tr>
<tr>
<td>12</td>
<td>6.8</td>
<td>6.9</td>
<td>-0.1</td>
</tr>
<tr>
<td>13</td>
<td>6.8</td>
<td>5.6</td>
<td>0.8</td>
</tr>
<tr>
<td>14</td>
<td>5.7</td>
<td>4.2</td>
<td>1.5</td>
</tr>
<tr>
<td>15</td>
<td>8.6</td>
<td>5.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>
• claim... drug treatment helps to prevent prematurity

• null hypothesis...
 $H_0: \mu_d = 0$
 $H_1: \mu_d > 0$

• test statistic...
 $t = \bar{d} / (s_d / \sqrt{n})$
 $t = 0.820 / (0.887 / \sqrt{15}) = 3.58$

• critical value... with $\alpha = 0.05$, 14 DF, one-tail (table A-3), 1.761

• P-value... hard to determine from table in Triola
 use other tables (Rosner), or software from Statcrunch, P-value = 0.002

• conclusion... reject the null hypothesis
 drug treatment helps to prevent prematurity
• confidence interval for matched pairs (one-sided)

\[E = t_{\alpha/2} \left(s_d / \sqrt{n} \right) \]
\[E = 1.761 \left(0.887 / \sqrt{15} \right) = 0.403 \]
\[d - E < \mu_d \]
\[0.820 - 0.403 < \mu_d \]
\[0.417 < \mu_d \]

same conclusion as hypothesis test since zero (no difference) not within the lower bound of the one-sided confidence band
TWO MEANS - INDEPENDENT SAMPLES

- continuous data

- test statistic is t

- requirements

 same issues as to sampling as before (random, representative)

 two samples are independent

 either or both conditions: in both sample, sample size > 30;
 both samples come from populations having normal distributions
 (test is robust in that departures from normality requirement is
 not strict as long as there are no outliers and that data are not
 extremely far from being normally distributed)
ISSUES

• how to compute the standard error of the difference between two means

• how to compute the degrees of freedom to use when looking up the critical values and when computing P-values
• compare the variances from the two samples

if equal... compute a pooled estimate of the standard error...

\[se = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} \]

where...

\[sp^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)} \]

or...

\[se = sp \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \]

where...

\[sp = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \]

and degrees of freedom...

\[df = n_1 + n_2 - 2 \]
if not equal... Satterthwaite's Method...

\[
se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}
\]

and degrees of freedom...

\[
df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1} / (n_1 - 1)\right) + \left(\frac{s_2^2}{n_2} / (n_2 - 1)\right)}
\]

(if not a whole number, round down to the nearest integer)

Triola... degrees of freedom...

\[
df = \text{smaller of } (n_1 - 1) \text{ and } (n_2 - 1)
\]
TWO VARIANCES - INDEPENDENT SAMPLES

• test statistic is F

• requirements

same issues as to sampling as before (random, representative)

two samples are independent

two populations are normally distributed (important since methods used to compare variances are extremely sensitive to departures from normality)
Example from Triola... summary statistics on male and female students (in inches)...

- **males:** $n = 16, \bar{x} = 68.4, s = 2.54$
- **females:** $n = 12, \bar{x} = 63.2, s = 2.39$

- **claim...** the variances in the two groups are equal

- **null hypothesis...**

 \[H_0: \sigma_1^2 = \sigma_2^2\]
 \[H_1: \sigma_1^2 \neq \sigma_2^2\]

- **test statistic...**
 \[F = \frac{s_1^2}{s_2^2} = \frac{2.54^2}{2.39^2} = 1.1295\]

- **critical value...** with $\alpha=0.025$ (in right tail), 15 DF in numerator, 11 DF in denominator, table A-5 in Triola, 3.3299
F Table for alpha = .025.

<table>
<thead>
<tr>
<th>df2/df1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>647.7890</td>
<td>799.5000</td>
<td>864.1630</td>
<td>899.5833</td>
<td>921.8479</td>
<td>937.1111</td>
<td>948.2169</td>
<td>956.6562</td>
<td>963.2846</td>
<td>968.6274</td>
<td>976.7079</td>
<td>984.8668</td>
</tr>
<tr>
<td>6</td>
<td>8.8131</td>
<td>7.2599</td>
<td>6.5988</td>
<td>6.2272</td>
<td>5.9876</td>
<td>5.8198</td>
<td>5.6955</td>
<td>5.5996</td>
<td>5.5234</td>
<td>5.4613</td>
<td>5.3662</td>
<td>5.2687</td>
</tr>
</tbody>
</table>
reverse variances in calculation of test statistic...

\[F = \frac{\sigma_2^2}{\sigma_1^2} = \frac{2.39^2}{2.54^2} = 0.8854 \]

look in the left-tail, critical value is now 0.3003

NOTE: after reversing the degrees of freedom, left-tail critical value = 1 / right-tail critical value
• P-value...

hard to determine from any F table, use Statcrunch...
P-value = 0.8548
(2x value from Statcrunch since this is two-tail test)

• conclusion... fail to reject the null hypothesis
no evidence to say the variances differ

• Rosner... "Be cautious about using this test with nonnormally distributed samples."
• confidence interval on the ratio of two variances...

\[
\frac{s_1^2}{s_2^2} \left(\frac{1}{F_R} \right) < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} \left(\frac{1}{F_L} \right)
\]

\[
\frac{2.54^2}{2.39^2} \left(\frac{1}{3.3299} \right) < \frac{\sigma_1^2}{\sigma_2^2} < \left(\frac{2.54^2}{2.39^2} \right) \left(\frac{1}{0.3325} \right)
\]

\[0.3392 < \frac{\sigma_1^2}{\sigma_2^2} < 3.3969\]

• same conclusion... no evidence to say the variances differ
 confidence interval includes 1
WHAT SHOULD YOU DO

• Triola suggests...

 ignore the preliminary variance test

 do not pool the sample variances

 use the smaller sample size in the two groups to find DF

• others...

 perform a preliminary test to see if variances are equal

 if equal, use a pooled estimate of the variance and use...
 DF = n1+n2-2

 if unequal, do not pool the sample variances and use
 Satterthwaite's method to compute DF
• for quiz problems, you should...

perform a preliminary test to see if variances are equal

if equal, use a pooled estimate of the variance and use...
DF = n1+n2-2

if unequal, do not pool the sample variances and use the smaller sample size in the two groups to find DF (don't bother to use Satterthwaite's method)
Example from Triola... effectiveness of paroxetine for treating bipolar depression... scores on a depression scale...

\[\text{placebo group: } n = 43, \bar{x} = 21.57, s = 3.87 \]
\[\text{treatment group: } n = 33, \bar{x} = 20.38, s = 3.91 \]

- claim... there is no difference between the placebo and treatment groups

- null hypothesis...
 \[H_0: \mu_1 = \mu_2 \]
 \[H_1: \mu_1 \neq \mu_2 \]

- compare variances...
 \[F = \frac{3.91^2}{3.87^2} = 1.0208 \]

 critical value with \(\alpha = 0.05 \), 32 DF in numerator, 42 DF in denominator, 1.9078 (no evidence to reject null hypothesis of equal variances)
• pool variances...
\[sp = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \]
\[sp = \sqrt{\frac{(42)3.87^2 + (32)3.91^2}{74}} = 3.8873 \]

• test statistic...
\[t = \frac{(\bar{x}_1 - \bar{x}_2)}{sp\sqrt{(1/n_1) + (1/n_2)}} \]
\[t = \frac{(21.57 - 20.38)}{3.89\sqrt{(1/43) + (1/33)}} = 1.323 \]

NOTE: test statistic in text without using pooled variances, \(t = 1.321 \)

• critical value...
with \(\alpha = 0.05 \), 74 DF, two-tail
from Statcrunch, 1.993

• P-value...
hard to determine from table in Triola
from Statcrunch, P-value = 0.19

• conclusion...
no evidence to reject the null hypothesis
• confidence interval on the difference between two means…

\[
E = t_{\alpha/2}(s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}})
\]

\[
E = 1.993(3.89 \sqrt{\frac{1}{43} + \frac{1}{33}})
\]

\[
E = 1.79
\]

\[
(\bar{x}_1 - \bar{x}_2) - E < (\mu_1 - \mu_2) < (\bar{x}_1 - \bar{x}_2) + E
\]

\[
(21.57 - 20.38) - 1.79 < (\mu_1 - \mu_2) < (21.57 - 20.38) + 1.79
\]

\[
-0.603 < (\mu_1 - \mu_2) < 2.983
\]

• same conclusion… no evidence to reject the null hypothesis
 confidence interval includes 0

NOTE: confidence interval without using paired variances…

\[
-0.607 < (\mu_1 - \mu_2) < 2.987
\]
SAMPLE SIZE AND POWER

- sample size for comparing means of two normally distributed samples of equal size using a two-sided significance test...

\[n = \frac{(\sigma_1^2 + \sigma_2^2)(z_{1-\alpha/2} + z_{1-\beta})^2}{\Delta^2} \]

where... \[\Delta = |\mu_1 - \mu_2| \] (difference worth detecting)

how does sample size vary with... variability, \(\alpha \), \(\beta \), \(\Delta \)
power for comparing means of two normally distributed samples of equal size using a two-sided significance test...

\[
\text{power} = \Phi \left[- z_{1-\alpha/2} + \frac{\Delta}{\sqrt{(\sigma_1^2 / n_1) + (\sigma_2^2 / n_2)}} \right]
\]

where... \(\Delta = |\mu_1 - \mu_2| \) (difference worth detecting)

how does power vary with... variability, \(\alpha \), \(n \), \(\Delta \)
sample size for longitudinal studies comparing mean change in two normally distributed samples with two time points using a two-sided significance test...

\[
n = \frac{2\sigma_d^2(z_{1-\alpha/2} + z_{1-\beta})^2}{\Delta^2}
\]

where...

\[
\Delta = |\mu_1 - \mu_2| \quad \text{(difference worth detecting)}
\]

\[
\sigma_d^2 = \sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2 \quad \text{(\(\rho\) is the correlation coefficient between baseline and followup values)}
\]

how does sample size vary with... variability, \(\alpha\), \(\beta\), \(\rho\), \(\Delta\)
• power of a longitudinal studies comparing mean change in two normally distributed samples with two time points using a two-sided significance test...

\[\text{power} = \Phi \left[-z_{1-\alpha/2} + \frac{\sqrt{n}\Delta}{\sigma_d\sqrt{2}} \right] \]

where...
\[\Delta = |\mu_1 - \mu_2| \] (difference worth detecting)
\[\sigma_d^2 = \sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2 \] (\(\rho \) is the correlation coefficient between baseline and followup values)

how does power vary with... variability, \(\alpha \), \(n \), \(\rho \), \(\Delta \)