Representing a graph:

- Graph $G(V, E)$: V - set of nodes (vertices); E - set of edges.
- Notation: $n = |V|$ and $m = |E|$. (Vertices are numbered 1 through n.)
- Size of G is $|V| + |E| = n + m$. (Note that $m = O(n^2)$.)
- Degree of a node is the number of edges incident on that node.
- In a directed graph, each node has an *out degree* and an *in degree*.
- For dense graphs, $m = \Theta(n^2)$.
- For sparse graphs, $m = o(n^2)$. (Typically, for a sparse graph, $m = O(n)$.)

Notes:

1. $O(|V|)$ and $O(n)$ are used interchangeably; similarly, $O(|E|)$ and $O(m)$ are used interchangeably.
2. Edge between nodes i and j in an undirected graph is denoted by $\{i, j\}$.
3. Edge *from* node i *to* node j in a directed graph is denoted by (i, j).
4. For an undirected graph $G(V, E)$,
 $$\sum_{v \in V} \text{degree}[v] = 2m.$$
5. For a directed graph $G(V, A)$,
 $$\sum_{v \in V} \text{Indegree}[v] = \sum_{v \in V} \text{Outdegree}[v] = m.$$

(a) Adjacency list representation:

- Adj[1 .. n]: An array of pointers.
- Adj[i] points to a list of nodes; each node stores the number of a node that is adjacent to node i.

Elementary Graph Algorithms

Ref: Chapter 22 of text. (Omit Section 22.5.)
For a directed graph, the list for each node stores the outgoing edges from that node.
- Edge weights can also be stored in the lists.
- Total number of nodes in all lists = 2m.
- Total storage = $O(n + m)$: linear in the size of the graph.

Example: To be presented in class.

Advantages:
1. Size of representation is linear in the size of graph.
2. Particularly suitable for sparse graphs.

Disadvantage: To check whether an edge $\{i, j\} \in E$, $\Theta(n)$ time is used in the worst case.

(b) Adjacency Matrix representation:
- Uses an $n \times n$ Boolean matrix M.
- $M[i, j] = 1$ if $\{i, j\}$ is an edge and 0 otherwise. (By convention, $M[i, i] = 0$, $1 \leq i \leq n$.)

- The adjacency matrix of an undirected graph is symmetric. (The adjacency matrix for a directed graph may not be symmetric.)
- If an edge $\{i, j\}$ has a weight, a non-Boolean matrix can be used instead.
- Total storage = $O(n^2)$: may be quadratic in the size of the graph.

Example: To be presented in class.

Advantages:
1. To check whether an edge $\{i, j\} \in E$, $O(1)$ time is sufficient.
2. Suitable for dense graphs.

Disadvantage: If the graph is sparse, size of representation may be quadratic in the size of graph.
Breadth-First Search (BFS):

- Given a connected graph G and a source node s, BFS systematically explores G to discover all the nodes reachable from s.
- BFS produces a tree (called BFS tree) T such that the path from s to any node w in T is a shortest path (in terms of number of edges) in G from s to w.
- BFS expands the frontier between visited and unvisited nodes along the breadth of the frontier; that is, nodes at a distance k from s are discovered before those at a distance of $k + 1$ or more.

Example: To be presented in class.

Implementation of BFS:

- Adjacency list representation for graph.
- A color scheme to remember whether or not a node has been discovered.
 (a) White: A node that has not yet been discovered. (Initially, all nodes are white.)
 (b) Black: All nodes adjacent to a black node have been discovered (i.e., a black node has no adjacent white node).
 (b) Gray: A gray node may have some undiscovered (white) node adjacent to it.

Values stored for each node u:

- $\text{Adj}[u]$: List of adjacent nodes.
- $d[u]$: Distance of u from s.
- Initially, $d[u] = \infty$ for all nodes in $V - \{s\}$ (s: source node).
- At the end, for each $u \in V$, $d[u]$ gives the shortest path length from s to u.
- $\pi[u]$: Parent of u in the BFS tree. ($\pi[u]$ is NULL if u has no parent.)
- $\text{Color}[u]$: Color of node u.

Auxiliary data structure: FIFO Queue Q
(to enforce the breadth-first nature of the search).

Pseudocode: Handout 15.1.

Example: To be presented in class.
Running time of BFS:
- Step 1: \(O(n) \) time.
- Steps 2 and 3: \(O(1) \) time.
- Step 4: \(O(n + m) \) time. (Explanation in class.)
- Overall running time of BFS = \(O(n + m) \).

BFS and shortest paths: To be discussed in class.

Generating shortest paths from BFS tree:
- See pseudocode for \(\text{PRINT-PATH} \) in Handout 15.1.
- Running time of \(\text{PRINT-PATH} = O(n) \). (Each recursive call shortens the path being considered by 1.)

Depth-First Search (DFS):
- The idea is to search “deeper” in the graph whenever possible.
- The graph generated by DFS is a depth-first spanning tree if the graph \(G \) is connected; otherwise, it is a forest of trees.

Example: To be presented in class.

Implementation of DFS:
- Same color-coding scheme as BFS.
- Global variable ‘time’ is used to generate the values of time stamps.
- For each node \(u \), instead of distance, two time stamp values are stored.
 (a) \(d[u] \): Time when \(u \) is first discovered (i.e., time when the color of \(u \) changes to gray).
 (b) \(f[u] \): Time when the search finishes examining \(u \)’s adjacency list (i.e., time when the color of \(u \) changes to black).

Notes on timestamps:
1. Timestamps are integers in the range \([1 .. 2n]\). (\(2n \) timestamp values are needed because each node gets ‘discovered’ once and ‘finished’ once.)
2. For each node \(u \), \(d[u] < f[u] \).
3. The color of \(u \) is white before \(d[u] \), gray between \(d[u] \) and \(f[u] \), and black thereafter.
Pseudocode for DFS: Handout 15.1.

Example for DFS: To be presented in class.

Running time of DFS:

- Steps 1 and 2 (Initialization steps): \(O(n) \) time.
- DFS-Visit is called exactly once for each node.
- The call DFS-Visit\((v)\) takes \(O(\text{degree}(v)) \) time.
- So, total time for all calls to DFS-Visit is \(O(\sum_{v \in V} \text{degree}(v)) = O(m). \)
- So, the running time of DFS is \(O(n + m). \)

Classification of edges through DFS

Tree edges: Edges in the DFS tree (or forest).

- DFS on an undirected graph: Edge \(\{u, v\} \) is a tree edge if \(v \) was discovered when \(u \)'s adjacency list was being processed or \(u \) was discovered when \(v \)'s adjacency list was being processed.

- DFS on a directed graph: Edge \((u, v)\) is a tree edge if \(v \) was discovered when \(u \)'s adjacency list was being processed (i.e., while the edge \((u, v)\) was being explored).

Back edges: Such edges are not in the DFS tree (or forest).

- A back edge joins a node \(v \) to an ancestor of \(v \) in the DFS tree.
- Self loops in directed graphs are considered to be back edges.

Forward edges: Such edges are also not in the DFS tree (or forest).

- Forward edges are possible only in directed graphs.
- A forward edge \((u, v)\) joins a node \(u \) to a descendant \(v \) in the DFS tree.
Cross edges: Any edge that is not a tree edge or a back edge or a forward edge.

- Cross edges are possible only in directed graphs.
- A cross edge may join a pair of nodes as long as one is not an ancestor of another in the DFS tree.

Modifying DFS to classify edges:

- For directed graphs only.
- The modification won’t distinguish between forward and cross edges.
- Uses the colors of nodes.

Suppose the directed edge \((u, v)\) is encountered.

(a) If Color\([v]\) is white, then \((u, v)\) is a tree edge.
 (Reason: Vertex \(v\) is just being discovered.)
(b) If Color\([v]\) is gray, then \((u, v)\) is a back edge.
 (Reason: Gray nodes are in the (recursion) stack and \(v\) is deeper in the stack than \(u\).)
(c) If Color\([v]\) is black, then \((u, v)\) is a forward or cross edge.

Example for Case (c): To be presented in class.

Note: In Case (c),

- \((u, v)\) is a forward edge if \(d[u] < d[v]\).
- \((u, v)\) is a cross edge if \(d[u] > d[v]\).

Theorem 1: In a DFS of an undirected graph \(G(V, E)\), every edge in \(E\) is either a tree edge or a back edge.

Proof: To be presented in class.

Applications of DFS:

1. Finding connected components:
 - For undirected graphs only.
 - Suppose \(G(V, E)\) has \(t\) connected components, numbered 1 through \(t\).
 - Algorithm produces array \(CC[1 .. n]\), where \(CC[u]\) is the number of the connected component containing nodes \(u\).
• **Idea:** Do a DFS. Whenever the recursive calls to DFS-Visit are completed and a new “exploration” is started, a new connected component begins.

Pseudocode: Handout 15.2.

Running time: $O(m+n)$ (because it involves just a DFS).

2. **Topological sort of a DAG:**

Note: DAG – Directed Acyclic Graph.

Definition: Given a DAG G, a topological sort of G is a linear arrangement of the nodes so that for each directed edge (u, v), u appears before v.

• Thus, a topological sort is a listing of the nodes on a line so that each directed edge goes from left to right.

• Such an ordering is not possible if the directed graph contains a cycle.

• Topological sort is used in situations where an order for a set of events needs to be determined given some precedence constraints.

Examples: To be discussed in class.

Pseudocode: Handout 15.2.

Running time: $O(m + n)$.

Correctness of the algorithm:

Observation 2: When DFS is carried out on a dag, no back edges can arise.

Reason: Any back edge indicates the presence of a directed cycle.

Theorem 3: When DFS is carried out on a dag, for every directed edge (u, v), $f[u] > f[v]$.

Proof: To be presented in class.