Quicksort

Ref: Chapter 7 of text.

Quicksort:
- An in-place sorting algorithm.
- Invented by Tony Hoare in 1962.
- Worst-case running time: $\Theta(n^2)$.
- Expected running time: $O(n \log n)$.
- Fastest sorting algorithm in practice.
- Based on divide-and-conquer. (Much of the work is done in the divide step.)

Outline: Assume that subarray $A[p..r]$ needs to be sorted into increasing order.

(a) **Divide step:** Partition the array into two subarrays $A_1 = A[p..q-1]$ and $A_2 = A[q+1..r]$ so that each element in A_1 is $\leq A[q]$ and $A[q]$ is \leq each element in A_2. (Index q is computed as part of this step.)

(b) **Conquer step:** Sort the subarrays A_1 and A_2 recursively. (Recursion stops when each subarray has size 1.)

(c) **Combine step:** Nothing needs to be done.

Pseudocode for Quicksort: Handout 8.1.

Conceptual view of Partition:

- $A[p..r]$ is the array to be partitioned.
- x is the pivot element.
- p and r are the start and end indices of the subarray.
- q is the index of the pivot.

Partitioning process:
1. Place the pivot x at the correct position q.
2. Move all elements less than x to the left of q and all elements greater than x to the right of q.
3. Recursively apply the partitioning process to subarrays $A[p..q-1]$ and $A[q+1..r]$.

Diagram:
- $A[p..r]$ is the array.
- x is the pivot element.
- p and r are the start and end indices of the subarray.
- q is the index of the pivot.
- Elements $\leq x$ are to the left of q.
- Elements $> x$ are to the right of q.
Intuitive explanation:

- Initially,
 - The “Keys ≤ x” region is empty.
 - The “Keys > x” region is empty.
 - The “Unrestricted” region extends from index p to index $r - 1$.
 - The pivot element is at index r.
- Each iteration of the loop shrinks the “Unrestricted” region by one element.
- At the end of the loop, the “Unrestricted” region is empty.

Pseudocode for Partition: Handout 8.1.

Example for Partition: To be presented in class.

Loop Invariant for Partition: At the beginning of each iteration of the loop, for any index k,
1. If $p \leq k \leq i$, then $A[k] \leq x$.
2. If $i + 1 \leq k \leq j - 1$, then $A[k] > x$.
3. If $k = r$, then $A[k] = x$.

Correctness of Loop Invariant: To be presented in class.

Running time of Partition:
- Algorithm spends $O(1)$ time at each element of subarray $A[p..r]$. (The element is either skipped or exchanged.)
- So, running time is $O(n)$ where $n = r - p + 1$ is the size of the subarray; that is, the running time is linear in the size of the subarray.
Worst-case analysis:

(a) **Lower bound on running time:** \(\Omega(n^2) \).

Consider the input \(A[1..n] \) with \(A[i] = a_i \) such that
\[a_1 < a_2 < \ldots < a_n. \]
That is, input is already in sorted order.

- Let \(L(n) \) denote the running time for the above input.
- First call to **Partition** spends \(d \) time (for some constant \(d > 0 \)) and returns \(q = n \) with no change to the array.
- Time on the subarray \(A[1..n-1] \) is \(L(n-1) \).

Thus,
\[
L(n) \geq L(n-1) + d \]
with \(L(1) \) being a positive constant. It is easy to see that \(L(n) = \Omega(n^2) \).

(b) **Upper bound:** \(O(n^2) \).

Proof idea:

- \(T(n) \): Running time on array of size \(n \).
- **Partition** time \(\leq c_1 n \).
- Let the resulting two subarrays have sizes \(q \) and \(n - q - 1 \). Then:
\[
T(n) \leq \max_{0 \leq q \leq n-1} \{ T(q) + T(n-q-1) \} + c_1 n
\]
with \(T(1) = c_2 \) for some constant \(c_2 > 0 \).

Solution: \(T(n) = O(n^2) \). (Details in class.)

Intuition for average case:

- Worst-case requires a “bad” split each time.
- If each split has \(\alpha n \) elements on the low side and \((1 - \alpha) n - 1 \) elements on the high side for some \(0 < \alpha < 1 \), then running time would be \(O(n \log n) \).
- In practice, there is a mix of bad and acceptable splits.
A randomized version of Quicksort:

- **Recall:** Function `Random(x, y)` returns an integer `i` in `[x .. y]` under uniform distribution.
- **Basic idea:** Before calling `Partition`, swap `A[r]` with `A[i]`, where `i` is the value returned by `Random(p, r)`.

Pseudocode: Handout 8.1.

Observations:

- Running time of `Quicksort` is dominated by the total time spent in all the calls to `Partition`.
- A pivot element used in some call to `Partition` is never looked at in any other call to `Partition`.

 (a) The total number of calls to `Partition` is at most `n`.

 (b) Since each call to `Partition` uses `O(n)` time, the worst-case time of `Quicksort` = `O(n^2)`.

- Each call to `Partition` uses `O(1)` time to carry out initialization and final wrap-up; the other part of the time is proportional to the number of comparisons made between the pivot element and other elements of the subarray.
- So, the running time of `Quicksort` is `O(n + X)`, where `X` is the total number of comparisons made in all the calls to `Partition`.
- In the worst-case, `X = \Theta(n^2)`.
- For average-case analysis, treat `X` as a random variable and compute `E[X]`.

Average-case Analysis:

Assumptions and Notation:

- Array `A` contains some permutation of `n` distinct values `z_1 < z_2 < \ldots < z_n`. (So, `z_i` is the `i`th smallest value.)
- For `1 \leq i < j \leq n`, the set `Z_{i,j}` is defined to be `{\hat{z}_i, z_{i+1}, \ldots, z_j}`.
Further observations:

- Each pair of elements z_i and z_j gets compared at most once in the entire run of Quicksort.
- Until an element from Z_{ij} gets chosen as the pivot, all elements of Z_{ij} are in the same subarray produced by Partition.

Lemma 1: z_i and z_j are compared in a run of Quicksort if and only if z_i or z_j is the first pivot chosen from Z_{ij}.

Proof: To be presented in class.

Theorem 1: The expected number of comparisons in Randomized-Quicksort is $O(n \log n)$.

Ideas used in proving Theorem 1: (Details in class)

- Define indicator variables x_{ij}, $1 \leq i < j \leq n$, where $x_{ij} = 1$ if z_i and z_j are compared and 0 otherwise.
- The random variable X for the number of comparisons made by Quicksort is given by
 $$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_{ij}$$
- Use Lemma 1 to show that $E[x_{ij}] = 2/(j - i + 1)$.
- Use linearity of expectation and known upper bound on harmonic series.