Running time of Euclid’s Algorithm:

Lemma 5.1: For positive integers \(p \) and \(q \) with \(p > q \), \(p \mod q < p/2 \).

Proof (idea): Consider two cases:
(a) \(q \leq p/2 \) and (b) \(q > p/2 \).

Usefulness of Lemma 5.1:
\[
gcd(m, n) \\
\downarrow \\
gcd(n, r) \quad \text{where } r = m \mod n \\
\downarrow \\
gcd(r, r') \quad \text{where } r' = n \mod r
\]

- In the last step above, \(r' < n/2 \) by the lemma; i.e., after two iterations, the second argument reduces by a factor of \(1/2 \).
- So, the number of iterations before the second argument becomes 0 is \(O(\log n) \).
- No. of arithmetic operations per iteration = \(O(1) \).
- Total no. of arithmetic operations = \(O(\log n) \).

Input size and running time:

- For sorting, input size is \(n \), the number of values to be sorted. Insertion Sort, Merge Sort, etc., are efficient algorithms (i.e., they run in time that is bounded by a polynomial in the input size).

- For binary search, the input size is \(n \), the size of array. Running time \(O(\log n) \) does not include the time needed to read in the array.

- For the GCD problem:
 - Input size = \(O(\log m + \log n) \).
 - Time to read input = \(O(\log m + \log n) \).
 - No. of arithmetic operations = \(O(\log n) \).
 - Time for each operation = \(O((\log m + \log n)^2) \).
 - Running time = \(O(\log n (\log m + \log n)^2) \).

So, Euclid’s Algorithm is efficient.
Recursive version:

Euclid(m, n) /* m > n */
 if (n = 0)
 return m
 else
 return Euclid(n, m mod n)

Notation: For all \(i \geq 1\), \(F_i\) denotes the \(i^{th}\) Fibonacci number.

Lemma 5.2: If \(m > n \geq 0\) and Euclid \((m, n)\) performs \(k\) recursive calls, then \(m \geq F_{k+2}\) and \(n \geq F_{k+1}\).

Proof: Induction on \(k\). (Details in class.)

Lamé’s theorem: For any integer \(k \geq 1\), if \(m > n \geq 0\) and \(n < F_{k+1}\), then Euclid \((m, n)\) performs at most \(k - 1\) recursive calls.

Exercise: Show that for all \(k \geq 2\), Euclid \((F_{k+1}, F_k)\) leads to exactly \(k - 1\) recursive calls.

Ref: Chapter 4 of text (omit Section 4.4).

Assumptions:
- Usual goal: To obtain an asymptotic (big-O) estimate.
- For small values of \(n\), function values are constants.

Substitution method:
- Uses induction to prove the solution.
- Common to use second form of induction.

Example 1: Prove by the substitution method that the solution to the recurrence

\[T(n) = 2T\left(\left\lfloor n/2 \right\rfloor\right) + n \text{ for } n \geq 4 \]

with \(T(2) = 4\) and \(T(3) = 5\) is

\[T(n) = O(n \log n). \]
Notes:
- We prove by induction that for some constant $c > 0$, $T(n) \leq cn \log_2 n$. (Details in class.)
- The value of constant c is identified after going through the proof.

Example 2: Prove by the substitution method that the solution to the recurrence

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \text{ for } n \geq 2$$

with $T(1) = c_1$ is: $T(n) = O(n)$.

Notes:
- If we try to prove that $T(n) \leq cn$ for some constant $c > 0$, the attempt will fail. (Details in class.)
- Remedy: Strengthen the inductive hypothesis. We prove that for some constants c and b, $T(n) \leq cn - b$. (Details in class.)
- The values of constants c and b are identified after going through the proof.

A pitfall to avoid: For the recurrence

$$T(n) = 2T(\lfloor n/2 \rfloor) + n \text{ for } n \geq 4$$

consider the following “proof” that $T(n) = O(n)$:

Verify basis as usual; assume that $T(k) \leq ck$ for $3 \leq k < n$. Now, consider $k = n$.

$$T(n) = 2(c\lfloor n/2 \rfloor) + n \text{ (by ind. hyp.)}$$
$$= cn + n$$
$$= O(n) \quad \text{(defn. of big-O)}$$

- The above “proof” is INCORRECT. What is assumed as the hypothesis for $k < n$, must be proven for $k = n$ as well.
- That is, we must prove that $T(n) \leq cn$ for $k = n$. We can’t use big-O at that point.
Changing variables: May help in converting an unfamiliar recurrence into a familiar one.

Example 3: Solve the recurrence

\[T(n) = 2T(\sqrt{n}) + \log_2 n \]

Let \(m = \log_2 n \); that is, \(n = 2^m \). The recurrence becomes

\[T(2^m) = 2T(2^{m/2}) + m. \]

Let \(S(m) = T(2^m) \). Now, the recurrence becomes familiar:

\[S(m) = 2S(m/2) + m. \]

Solution: \(S(m) = O(m \log m) \).

Solution in terms of \(T(n) \):

\[T(n) = O(\log n \log (\log n)). \]

Master Theorem: (MT)

Let \(a \geq 1 \) and \(b > 1 \) be constants, let \(f(n) \) be a function and let \(T(n) \) be defined by

\[T(n) = aT(n/b) + f(n) \]

where \(n/b \) may be either \(\lfloor n/b \rfloor \) or \(\lceil n/b \rceil \).

Part 1: If \(f(n) = O(n^{\log_b a - \epsilon}) \) for some \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \).

Part 2: If \(f(n) = \Theta(n^{\log_b a}) \) then \(T(n) = \Theta(n^{\log_b a} \log n) \).

Part 3: If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some \(\epsilon > 0 \) and \(a f(n/b) \leq cf(n) \) for some \(c < 1 \) and for sufficiently large \(n \), then \(T(n) = \Theta(f(n)) \).

Notes:

- In all parts, \(f(n) \) is compared with \(n^{\log_b a} \). The “larger” function determines the solution.
- In Part 1, \(f(n) \) must be polynomially smaller than \(n^{\log_b a} \).
• In Part 3:
 - $f(n)$ must be \textit{polynomially} larger than $n^{\log_b a}$.
 - $f(n)$ must satisfy the \textit{regularity} condition
 $a f(n/b) \leq c f(n)$ as stated in MT.

• MT does \textit{not} cover all possible cases.

\underline{Example 1:} $T(n) = 4T(n/2) + n$.
 Here $a = 4$, $b = 2$. So, $\log_b a = 2$.
 $f(n) = n = O(n^{2-\epsilon})$ with $\epsilon = 1$.
 So, Part 1 of MT applies and $T(n) = \Theta(n^2)$.

\underline{Example 2:} $T(n) = 3T(n/2) + n$.
 Here $a = 3$, $b = 2$. So, $\log_b a = \log_2 3$.
 $f(n) = n = O(n^{\log_2 3-\epsilon})$ with $\epsilon = \log_2 3 - 1 \approx 0.59$.
 So, Part 1 of MT applies and $T(n) = \Theta(n^{\log_2 3})$.

\underline{Example 3:} $T(n) = 2T(n/2) + n$.
 Here $a = 2$, $b = 2$. So, $\log_b a = 1$.
 $f(n) = n = \Theta(n)$.
 So, Part 2 of MT applies and $T(n) = \Theta(n \log n)$.

\underline{Example 4:} $T(n) = T(2n/3) + 1$.
 Here $a = 1$, $b = 3/2$. So, $\log_b a = 0$.
 $f(n) = 1 = \Theta(1)$.
 So, Part 2 of MT applies and $T(n) = \Theta(\log n)$.

\underline{Example 5:} $T(n) = 2T(n/2) + n^2$.
 Here $a = 2$, $b = 2$. So, $\log_b a = 1$.
 $f(n) = n^2 = \Omega(n^{1+\epsilon})$ with $\epsilon = 1$.
 So, Part 3 of MT can be used if regularity condition holds.
 $a f(n/b) = 2f(n/2) = 2(n/2)^2 = \frac{1}{2}n^2$. So, regularity condition holds with $c = 1/2$.
 So, Part 3 of MT applies and $T(n) = \Theta(n^2)$.

\underline{Example 6:} $T(n) = 3T(n/4) + n \log_2 n$.
 Here $a = 3$, $b = 4$. So, $\log_b a = \log_4 3 < 1$.
 $f(n) = n \log_2 n = \Omega(n^{\log_4 3+\epsilon})$ with $\epsilon = 1 - \log_4 3$.
 So, Part 3 of MT can be used if regularity condition holds.
\[a \frac{f(n)}{b} = 3f(n/4) = 3(n/4) \log_2 (n/4) < \frac{3n \log_2 n}{4} \]. So, regularity condition holds with \(c = 3/4 \).

So, Part 3 of MT applies and \(T(n) = \Theta(n \log n) \).

A case where MT does not apply:

Example 7: \(T(n) = 2T(n/2) + n \log_2 n \).

Here \(a = 2 \), \(b = 2 \). So, \(\log_b a = 1 \).

\(f(n) = n \log_2 n \).

Thus, \(f(n) \neq O(n^{\log_b a - \epsilon}) \) for any \(\epsilon > 0 \). So, Part 1 of MT does not apply.

Similarly, Part 2 also does not apply.

Also, \(f(n) \neq \Omega(n^{1+\epsilon}) \) for any \(\epsilon > 0 \) (since \(\log_2 n = o(n^\epsilon) \) for every \(\epsilon > 0 \)). So, Part 3 also does not apply.

Exercise: Use the iteration or the substitution method to show that for the recurrence of Example 7, the solution is \(T(n) = O(n \log^2 n) \).