Problem 1: Let \(C[1..2n] \) denote the array that contains the result of merging \(A \) and \(B \). In the array \(C \), the elements of \(A \) must appear in the same order as in \(A \); likewise, the elements of \(B \) must also appear in the same order as in \(B \).

Each way of merging \(A \) and \(B \) can be described by choosing \(n \) positions in \(C \), filling the chosen positions using the elements \(A[1] \) through \(A[n] \) in that order from left to right, and filling the remaining \(n \) positions with the elements \(B[1] \) through \(B[n] \) in that order from left to right. Thus, the number of possible ways of merging \(A \) and \(B \) is equal to the number of ways of choosing \(n \) positions from a set of \(2n \) positions. In other words, the number of possible ways to merge \(A \) and \(B \) is \(\binom{2n}{n} \).

Part (b): Consider a decision tree representing a comparison-based algorithm that merges two sorted arrays of size \(n \). From the result of Part (a), the number of leaves in the decision tree must be \(\binom{2n}{n} \). Thus, the height of the tree, that is the number of comparisons in the worst-case, must be at least \(\log_2 \binom{2n}{n} \). To show that this quantity is at least \(2n - o(n) \), we use Stirling’s approximation:

Fact 3: For any positive integer \(k \),
\[
\sqrt{2\pi k} \left(\frac{k}{e}\right)^k \leq k! \leq \sqrt{2\pi k} \left(\frac{k}{e}\right)^{k+1}.
\]

Note that \(\binom{2n}{n} = \frac{(2n)!}{(n!n!)} \). Using Fact 3, \(\frac{(2n)!}{(n!n!)} \geq 2^{2n}e^2/(\sqrt{\pi n^{2.5}}) \). Therefore,
\[
\log_2 \left[\frac{(2n)!}{(n!n!)} \right] \geq 2n - (2.5 \log_2 n + \log_2 \sqrt{\pi} - \log_2 e^2).
\\\n(1)
\]
Since \(\log_2 n = o(n) \), the right hand side of Inequality (1) is \(2n - o(n) \). This completes the proof.

Problem 2:

Idea: We first use \(A \) to find the lower median \(x \) of \(S \). If \(i \) specifies the position of the lower median of \(S \), then the \(i^{th} \) smallest is indeed \(x \). Otherwise, we use the \textsc{Partition} function on \(S \) to get low and high sides of \(S \). We recurse on the appropriate side of \(S \), depending upon the relationship between \(i \) and the position of the median of \(S \). Since we use the median element as the pivot in \textsc{Partition}, larger of the two sides of \(S \) has at most \(\lceil n/2 \rceil \) elements. This leads to the running of \(O(n) \).

Algorithm: Since the algorithm is recursive, we use the parameters \(a \) and \(b \) to specify a subarray of \(S \). The parameter \(r \) indicates that we want to find the \(r^{th} \) smallest value in \(S[a..b] \). (The initial call to the algorithm is \textsc{Order-Statistic} \((S, 1, n, i)\).)
Order-Statistic $(S, a, b, r) \ /*$ Returns the rth smallest in $S[a..b]$. */

1. Let $p = b-a+1$ and let $m = \text{floor}((p+1)/2)$. Use the given
 algorithm A to find the lower median x of $S[a..b]$.
 (Thus, A returns the mth smallest value in $S[a..b]$.)
2. if $(r = m)$ then return x
 else
 2.1. Use Partition on $S[a..b]$ using x as the pivot.
 Let q be the index returned by Partition.
 2.2 if $(r < m)$ then /* Find the rth smallest on the low side of S. */
 Order-Statistic $(S, a, q-1, r)$
 else /* Find the $(r-m)$th smallest on the high side of S. */
 Order-Statistic $(S, q+1, b, r-m)$

Correctness: Suppose $|S| = n$ and we are looking for the ith smallest value. Algorithm A returns the lower median x, that is, the mth smallest value, where $m = \lfloor (n+1)/2 \rfloor$. The correctness of the algorithm is a consequence of the following observations:

(a) If $i = m$, then the required value is indeed x.

(b) If $i < m$, then the ith smallest remains the the ith smallest on the low side of the partition.

(c) If $i > m$, then the ith smallest is the $(i-m)$th smallest on the high side of the partition.

Running time analysis: Let $T(n)$ be the running time of the algorithm on an array of size n. The call to Algorithm A uses $O(n)$ time. The call to PARTITION also runs in $O(n)$ time. Since the median value is used as the pivot, the subsequent recursive call is on a subarray of size at most $\lceil n/2 \rceil$. The recursion ends when the subarray size is 1. Therefore, the recurrence for $T(n)$ is:

$$T(n) \leq T(\lceil n/2 \rceil) + cn$$

for $n \geq 2$ and $T(1) = c_1$, for some constants c and c_1.

We can solve the above recurrence using the Master Theorem. Comparing with the Master Theorem template, we note that $a = 1$, $b = 2$ and $f(n) = cn$. Thus, $\log_b a = 0$ and $n^{\log_b a} = n^0 = 1$. Thus, $f(n) = \Omega(n^{\log_b a + \epsilon})$, with $\epsilon = 1$. Thus, if the regularity condition holds, then Part 3 of Master Theorem can be applied.

The regularity condition holds since $af(n/b) = cn/2 = (1/2)c n$. Therefore, by Part 3 of Master Theorem, $T(n) = \Theta(f(n)) = \Theta(n)$. Thus, the running time is indeed linear in n.

Problem 3: For \(k = 1 \), the value \(x_1 \) is stored with probability 1. Thus, the result holds for \(k = 1 \) trivially. So, we assume that \(k \geq 2 \).

Consider any \(x_i \), where \(1 \leq i \leq k \). At the end of the \(k^{th} \) step, the value stored will be \(x_i \) if and only if both of the following conditions hold:

1. At Step \(i \), the value \(x_i \) replaced the stored value.
2. At each of the subsequent steps \(i + 1, i + 2, \ldots, k \), the stored value was *not* replaced.

Letting \(E_1 \) and \(E_2 \) denote the two events above, we see that the required probability is given by

\[
\Pr\{E_1\} \times \Pr\{E_2\}.
\]

Note that \(\Pr\{E_1\} = 1/i \) since in Step \(i \), the value \(x_i \) replaces the stored value with probability \(1/i \). For each subsequent step \(j \) \((i + 1 \leq j \leq k) \), the probability that \(x_i \) is *not* replaced is given by

\[
1 - \left(\frac{1}{j}\right) = \frac{j - 1}{j}.
\]

Therefore, the required probability = \(\Pr\{E_1\} \times \Pr\{E_2\} = 1/k \).

Problem 4:

Notation: For each node \(v_i \), \(p_i \) denotes the profit obtained by placing a restaurant at \(v_i \). We use \(d(v_i, v_j) \) to denote the distance between nodes \(v_i \) and \(v_j \). Recall that every pair of restaurants must be separated by a distance of at least \(k \).

Main idea: For each node \(v_i \), an optimal solution may or may not place a restaurant at that node. The dynamic programming algorithm keeps track of both of these possibilities.

For each node \(v_i \), we compute and store two values, denoted by \(A[i] \) and \(B[i] \), \(1 \leq i \leq n \). Here, \(A[i] \) \((B[i]) \) represents the maximum profit for the subproblem \(\langle v_1, \ldots, v_i \rangle \) when a restaurant is placed (not placed) at \(v_i \). After computing all the \(n \) entries of \(A \) and \(B \), the solution to the problem is given by \(\max\{A[n], B[n]\} \). We now discuss how the values in arrays \(A \) and \(B \) can be computed.

By definition, \(A[1] = p_1 \) and \(B[1] = 0 \). Now, suppose we have calculated values \(A[1 \ldots i] \) and \(B[1 \ldots i] \) for some \(i \geq 1 \). We can compute \(A[i + 1] \) and \(B[i + 1] \) as follows.
(a) $B[i + 1] = \max\{A[i], B[i]\}$. (Reason: If a restaurant is not placed at v_{i+1}, then the best profit for the subproblem $⟨v_1 \ldots v_{i+1}\rangle$ is the same as that for the subproblem $⟨v_1 \ldots v_i⟩$.)

(b) Try to find the first node v_j to the left of v_{i+1} (i.e., largest $j \in [1..i]$) such that $d(v_j, v_{i+1}) \geq k$. If such a node v_j is found, then $A[i + 1] = p_{i+1} + \max\{A[j], B[j]\}$; otherwise, $A[i + 1] = p_{i+1}$. (Reason: If a restaurant is placed at v_{i+1}, then restaurants can’t be placed at any of the nodes that are at a distance less than k from v_{i+1}.)

Pseudocode for the algorithm:

2. for $i = 1$ to $n - 1$ do

 (a) $B[i + 1] = \max\{A[i], B[i]\}$.

 (b) Try to find the first node v_j to the left of v_{i+1} such that $d(v_j, v_{i+1}) \geq k$. If such a node v_j is found, then $A[i + 1] = p_{i+1} + \max\{A[j], B[j]\}$; otherwise, $A[i + 1] = p_{i+1}$.

3. Output $\max\{A[n], B[n]\}$ as the solution.

Running time analysis: Steps 1 and 3 take $O(1)$ time. So, the dominant part of the running time is due to Step 2.

To implement Step 2 efficiently, we first compute the distance $D[i]$ of each node v_i from v_1, $1 \leq i \leq n$. (In other words, $D[i] = d(v_1, v_i)$, $1 \leq i \leq n$.) To do this, note that $D[1] = 0$ and $D[i] = D[i - 1] + d(v_{i-1}, v_i)$, $2 \leq i \leq n$. Since the $d(v_i, v_{i-1})$ values are given, we can compute all the n entries of D in $O(n)$ time. Once we have all the entries of D, notice that for any v_i and v_j, where $j < i$, the value $d(v_j, v_i) = D[i] - D[j]$ can be computed in $O(1)$ time.

For each iteration of the loop in Step 2, Step 2(a) runs in $O(1)$ time. In Step 2(b), using the array D, we can determine whether node v_j exists, and if so, find the node in $O(n)$ time. (This uses a simple backward scan from v_{i+1}.) After this, it takes only $O(1)$ time to compute the value of $A[i + 1]$. Thus, Step 2(b) runs in $O(n)$ time. Since the for loop runs $n - 1$ times, the time for Step 2 and hence the running time of the algorithm is $O(n^2)$.

Exercise to the student: It is possible to implement the above algorithm so that its running time is $O(n \log n)$. Try to develop such an implementation.