1. Two standard six-sided dice are thrown. Let \(X_1 \) and \(X_2 \) denote the random variables corresponding to the values shown by the two dice.

(a) Let \(X = X_1 + X_2 \). Compute the conditional probability \(\Pr\{X = 7 \mid X_1 \text{ is even}\} \). (8 points)

(b) Let \(Y = (X_1 + X_2) \mod 2 \). Compute \(\mathbb{E}[Y] \). (12 points)

2. Let \(X \) and \(Y \) be independent geometric random variables with success probabilities \(p \) and \(q \) respectively. (Thus, \(X \) (\(Y \)) represents the number of trials until the first success in a Bernoulli trial with success probability \(p \) (\(q \)).) Compute \(\Pr\{X = Y\} \). Be sure to explain how you arrived at the result. (25 points)

3. Suppose we have \(b \) bins denoted by \(B_1, B_2, \ldots, B_b \) and we toss a total of \(b \) balls into these bins. Assume that for each toss, the ball is equally likely to land in any of the \(b \) bins. (That is, for any toss, the probability that the ball lands in \(B_i \) is \(\frac{1}{b} \), \(1 \leq i \leq n \).)

(a) Consider bin \(B_1 \). Find the probability that exactly \(k \) of the \(b \) balls fall into \(B_1 \), where \(1 \leq k \leq b \). (10 points)

(b) Compute the expected number of bins that contain exactly one ball. (15 points)

4. Let \(P[1..n] \) be an array each of whose elements contains an integer value (which may be positive, negative or zero). A subarray \(P[i .. j] \) of \(P \), where \(i \leq j \), consists of the elements \(P[i], P[i+1], \ldots, P[j] \). We say that subarray \(P[i .. j] \) is monotone if \(P[i] \leq P[i+1] \leq P[i+2] \ldots \leq P[j] \). Assume that a subarray consisting of just one element is monotone. This problem asks you to devise an \(O(n) \) algorithm that determines the length of a longest monotone subarray of a given array. The algorithm must also compute the indices of such a subarray in \(O(n) \) time.

Your answer must include the following:

(i) A clear description of the data structure used by the algorithm.

(ii) Pseudocode for the algorithm along with an explanation of why the running time is \(O(n) \).

(iii) A clear explanation of why your algorithm is correct. (Ideally, this should be a rigorous proof of correctness.)

You won't receive any credit if your algorithm is incorrect or its running time is asymptotically worse than \(O(n) \). (30 points)