CSI 503 – Data Structures and Algorithms
Applications of Depth-First Search

Handout 15.2

(a) Pseudocode for finding connected components

Note: The algorithm is almost same as DFS itself. The algorithm does not use discovery times or finish times of nodes. For each node \(u \), it computes \(CC[u] \), the number of the connected component containing \(u \).

CONNECTED-COMP(\(G \))

1. **for** each vertex \(u \in V \) **do**

 Color\([u]\) = white.

2. \(t = 0 \). (At the end, \(t \) has the number of connected components.)

3. **for** each vertex \(u \in V \) **do**

 if \((\text{Color}[u] = \text{white}) \) **then**

 \(t = t + 1; \ CC[u] = t. \)

 DFS-Visit(\(u \)).

DFS-Visit(\(u \))

1. Color\([u]\) = gray.

2. **for** each vertex \(v \in \text{Adj}[u] \) **do**

 if \((\text{Color}[v] = \text{white}) \) **then**

 \(CC[v] = t; \)

 DFS-Visit(\(v \)).

3. Color\([u]\) = black. (Vertex \(u \) is finished.)

(b) Pseudocode for topological sort

Note: The algorithm is based on the fact that the topological sort of an acyclic graph is obtained by decreasing order of finish times of vertices when a DFS is carried out.

1. Initialize linked list \(L \) to empty.

2. Call **DFS**(\(G \)) and compute \(f[u] \) for each vertex \(u \in V \).

3. As each vertex is finished, insert it at the front of \(L \).

4. Return \(L \).