Variables: symbols beginning with the characters u,v,w,x,y, or z.

E.g., ’v3 ’uabc ’x

Constants: symbols other than variables

E.g., ’c1 ’k ’fx ’t17

Patterns:

(define p1 ’(a b (q y) (a z) w))
(define p2 ’(v b x (w z) w))
(define p3 ’(v b c (a c) w))
(define p4 ’(x b c (x v) w))
(define p5 ’((a w) b c (v x) v))
(define p6 ’(x (x x x) v (v v v)))
(define p7 ’((y y y) z (z z z) vz))

(define variable (lambda (x)
 (and (symbol? x)
 (string>=? (symbol->string x) "u"))))

(define constant (lambda (c)
 (and (symbol? c)
 (string<? (symbol->string c) "u"))))

(define pattern (lambda (e) (pair? e)))
The difference of two expressions:

\[
\text{diff}(\lambda (a \ b) \ \\
\quad \text{cond}\ ((\text{eq? a b})\ ()\ \\
\quad \quad \ ((\text{variable b})\ (\text{list a b}))\ \\
\quad \quad \ ((\text{constant b})\ (\text{list b a}))\ \\
\quad \text{; now, b must be a pattern}\ \\
\quad \quad ((\text{not (pair? a)})\ (\text{list b a}))\ \\
\quad \quad \ ((\text{diff (car a) (car b))})\ ; \text{if non-null, return it. Else,}\ \\
\quad \quad \ (#t (\text{diff (cdr a) (cdr b)})))\ ; \text{return diff of cdr’s.}\n\]

A difference is reducible if

the 2-nd element is a variable not occurring in the first

\[
\text{reducible?}\ (\lambda \text{diffpair} \ \\
\quad \text{and}\ (\text{not (null? diffpair)})\ \\
\quad \quad (\text{variable (cadr diffpair)})\ \\
\quad \quad \ (\text{not (occur (cadr diffpair) (car diffpair))}))\ \\
\]

\[
\text{occur}\ (\lambda (x \ y) \ ; \text{x must be a variable} \ \\
\quad \text{cond}\ ((\text{eq? x y})\ #t)\ \\
\quad \quad \ ((\text{not (pair? y)})\ ())\ \\
\quad \quad \ (#t \ (\text{or (occur x (car y)) (occur x (cdr y))}))\)\ \\
\]

UNIFYING expressions: can we unify, or match p1 and p2?

\[p_1 = ' (a \ b \ (q \ y) \ (a \ z) \ w)) \]
\[p_2 = ' (v \ b \ x \ (w \ z) \ w)) \]

YES, if:

- \(v \) becomes \(a \) and
- \(x \) becomes \((q \ y) \) and
- \(w \) becomes \(a \)

The substitution of expressions for variables is represented as a list of \textit{components}. Each component is a two-element list in which the first element replaces the second (required to be a variable).

The substitution above would be represented as:

\[((a \ v) \ ((q \ y) \ x) \ (a \ w)) \]
UNIFICATION (informal algorithm)

To unify expressions A and B, we start with
A, B, (diff A B), and the empty substitution ().

While (diff A B) is reducible, we:
modify A and B as indicated by (diff A B)
augment substitution S as indicated by (diff A B)
compute a new (diff A B)

EndWhile

EXAMPLE:

A = (P X (F (G Y)) (F X))
B = (P (H Y Z) (F Z) (F (H U V))))

S = ()
(diff A B) = ((H Y Z) X)

A = (P (H Y Z) (F (G Y)) (F (H Y Z)))
B = (P (H Y Z) (F Z) (F (H U V))))

S = (((H Y Z) X))
(diff A B) = ((G Y) Z)
A = (P (H (G Y)) (F (G Y)) (F (H (G Y))))
B = (P (H (G Y)) (F (G Y)) (F (H U V)))

\[S = (((H (G Y)) \ X) ((G Y) Z)) \]

(dif \ A \ B) = (Y U)

A = (P (H (G Y)) (F (G Y)) (F (H (G Y))))
B = (P (H (G Y)) (F (G Y)) (F (H Y V)))

\[S = (((H (G Y)) \ X) ((G Y) Z) (Y U)) \]

(dif \ A \ B) = ((G Y) V)

A = (P (H (G Y)) (F (G Y)) (F (H (G Y))))
B = (P (H (G Y)) (F (G Y)) (F (H (G Y))))

\[S = (((H (G Y)) \ X) ((G Y) Z) (Y U) ((G Y) V)) \]

(dif \ A \ B) = ()
(define unify (lambda (a b)
 (cond
 ((and (pattern a) (pattern b)
 (not (eq? (length a) (length b)))))
; both patterns, and unequal length, so fail.
 'not-unifiable)
 (#t (let ((diffab (diff a b))
 (onlydiff? (or (not (pattern a))
 (not (pattern b))))
 (cond ((null? diffab) ()) ; No diff - done!
 ((not (reducible? diffab)) 'not-unifiable)
 (onlydiff? (list diffab)))
; one of a,b isn't a pattern - this is the only difference,
; otherwise, both are patterns. Call unify on
; [diffab applied to a and to b] and return the
; composition of diffab and the result.
 (#t (compose
 (unify (subst (car diffab)
 (cadr diffab)
 a)
 (subst (car diffab)
 (cadr diffab)
 b))
 diffab)))))))
; the variable of diffpair must not occur in sub,
; because diffpair is *always* added as a component.
(define compose (lambda (sub diffpair)
 (cond ((eq? sub 'not-unifiable) 'not-unifiable)
 ((null? sub) (list diffpair))
 (#t (cons (list (subst (car diffpair)
 (cadr diffpair)
 (caar sub))
 (cadar sub))
 (compose (cdr sub)
 diffpair))))))

(define subst (lambda (x y z)
 (cond ((eq? y z) x) ; y is always a variable
 ((not (pair? z)) z) ; y doesn’t occur in z
 (#t (cons (subst x y (car z))
 (subst x y (cdr z)))))))

(define appsub (lambda (sub e)
 (cond ((null? sub) e)
 (#t (appsub (cdr sub)
 (subst (caar sub)
 (cadar sub)
 e))))))
\(p_1 = '(a b (q y) (a z) w)) \)
\(p_2 = '(v b x (w z) w)) \)
\(p_3 = '(v b c (a c) w)) \)
\(p_4 = '(x b c (x v) w)) \)
\(p_5 = '((a w) b c (v x) v)) \)
\(p_6 = '(x (x x x) v (v v v))) \)
\(p_7 = '((y y y) z (z z z) vz)) \)

1 => (map constant (list 'c1 'c2 'x 'y p5 p7))
;Value 17: (#t #t () () () ()

1 => (map variable (list 'c1 'c2 'x 'y p5 p7))
;Value 18: (() () #t #t () ()

1 => (map pattern (list 'c1 'c2 'x 'y p5 p7))
;Value 19: (() () () () #t #t)

1 => (diff 'c1 'c2)
;Value 20: (c2 c1)

1 => (diff 'x 'c3)
;Value 21: (c3 x)

1 => (diff 'c3 p1)
;Value 22: ((a b (q y) (a z) w) c3)

1 => (diff 'y 'v)
;Value 23: (y v)
Recall that

\[p_1 = ' (a b (q y) (a z) w)) \]
\[p_2 = ' (v b x (w z) w)) \]
\[p_4 = ' (v b c (a c) w)) \]
\[p_5 = ' (x b c (x v) w)) \]

1 \]=> (diff p4 p5)
;Value 24: ((a w) x)

1 \]=> (diff p1 p2)
;Value 25: (a v)

1 \]=> (define s (unify p1 p2))
;Value: s

1 \]=> s
;Value 26: ((a w) ((q y) x) (a v))

1 \]=> (appsub s p1)
;Value 27: (a b (q y) (a z) a)

1 \]=> (appsub s p2)
;Value 28: (a b (q y) (a z) a)

1 \]=> (equal? (appsub s p1) (appsub s p2))
;Value: #t
\[p_3 = \left(v \quad b \quad c \quad (a \quad c) \quad w \right) \]

\[p_4 = \left(x \quad b \quad c \quad (x \quad v) \quad w \right) \]

\[p_5 = \left((a \quad w) \quad b \quad c \quad (v \quad x) \quad v \right) \]

\[p_6 = \left((x \quad (x \quad x) \quad v \quad (v \quad v \quad v) \right)) \]

\[p_7 = \left(((y \quad y \quad y) \quad z \quad (z \quad z \quad z) \quad vz \right)) \]

1 \]=> (unify p3 p4) 1 \]=> (unify p4 p5)
;Value: not-unifiable ;Value: not-unifiable

1 \]=> (define longsub (unify p6 p7))
;Value: longsub

1 \]=> (pp longsub)

((((((y y y) (y y y) (y y y))
 ((y y y) (y y y) (y y y))
 ((y y y) (y y y) (y y y)))
 (((y y y) (y y y) (y y y))
 ((y y y) (y y y) (y y y)))
 (((y y y) (y y y) (y y y))
 ((y y y) (y y y) (y y y)))
 (((y y y) (y y y) (y y y))
 ((y y y) (y y y) (y y y)))
 (((y y y) (y y y) (y y y))
 (y y y) (y y y) (y y y))))

vz)

(((y y y) (y y y) (y y y))
 ((y y y) (y y y) (y y y))
 ((y y y) (y y y) (y y y)))

v)

(((y y y) (y y y) (y y y)) z)
((y y y) x))