Given a pile of \(n \) rocks (where \(n > 1 \)),
compute a number called \(\text{SPLIT}(n) \) in the following way:

The base case is when the pile has 1 rock; \(\text{SPLIT}(1) = 0 \)

In general,
given \(n \) rocks,
split the pile into 2 non-empty piles of \(k \) and \(n-k \) rocks.

Then, \(\text{SPLIT}(n) = (k) \cdot (n-k) + \text{SPLIT}(k) + \text{SPLIT}(n-k) \)

THEOREM:

\[
\forall \ n > 0 \quad \text{SPLIT}(n) = \frac{(n)(n - 1)}{2}
\]

PROOF: By induction on \(n \).

Base case: \(n = 1 \). \(\text{SPLIT}(1) = 0 = \frac{(1)(1 - 1)}{2} \)