Variables: symbol strings beginning with uppercase characters:

E.g., V3 Uabc Aaa, A8xv, F, Kx17tr, ...

Constants: symbol strings beginning with lowercase characters:

E.g., c1, k, fx, t17, xX27dV

terms:

\[t_1 = p(a, b, f(q, Y), f(a, Z), W) \]
\[t_2 = p(V, b, X, f(W, Z), W) \]
\[t_3 = p(V, b, c, f(a, c), W) \]
\[t_4 = p(X, b, c, f(X, V), W) \]
\[t_5 = p(f(a, W), b, c, f(V, X), V) \]
\[t_6 = m(X, g(X, X, X), V,) \]
\[t_7 = m(g(Y, Y, Y), Z, g(Z, Z, Z)) \]
The difference, \(\text{diff}(A, B) \), of two expressions \(A \) and \(B \) is defined to be their first two unequal subexpressions (scanning left to right).

The difference of

\[
\begin{align*}
\text{h}(a, b, f(q, Y), f(a, Z), W) \\
\text{and} \quad \text{h}(X, b, c, f(X, V), W)
\end{align*}
\]

is \(<a, X> \)

The difference of

\[
\begin{align*}
\text{h}(a, b, f(q, Y), f(a, Z), W) \\
\text{and} \quad \text{h}(a, b, c, f(X, V), W)
\end{align*}
\]

is \(<f(q, Y), c> \)

The difference of

\[
\begin{align*}
\text{g}(a, b, c, f(V, X), W) \\
\text{and} \quad \text{g}(a, b, c, f(V, Y), W)
\end{align*}
\]

is \(<X, Y> \)

The difference of

\[
\begin{align*}
\text{r}(a, b, c, f(X, V), W) \\
\text{and} \quad \text{r}(a, b, c, f(X, V), W)
\end{align*}
\]

is \(<\text{empty}> \)

A difference is reducible if one of the subexpressions is a variable not occurring in the other.
UNIFYING expressions: can we unify t1 and t2?
(Can we make them identical?)

\[
t_1 = (a, b, f(q, Y), f(a, Z), W)
t_2 = (V, b, X, f(W, Z), W)
\]

Yes, if:
- V becomes a
- and X becomes \(f(q, Y)\)
- and W becomes a

The substitution of expressions for variables is represented as a set of *components*.

We can write each component as a pointer from the variable to the expression (typical implementation).

The variable is bound to the expression;
- i.e., the expression replaces the variable.

The substitution above would be represented as:

\[\{V \rightarrow a, \ X \rightarrow f(q, y), \ W \rightarrow a\}\]
UNIFICATION (informal algorithm)

To unify expressions A and B, we start with
A, B, diff(A, B), and the empty substitution S = {}.

While diff(A, B) is reducible:
- Modify A and B as indicated by (diff A B);
- Augment substitution S as indicated by (diff A B);
- Compute a new (diff A B).

EndWhile

EXAMPLE:

\[
A = p(X, f(g(Y)), f(X)) \\
B = p(h(Y, Z), f(Z), f(h(U, V))) \\
S = {} \\
\text{(diff A B) = } <X, h(Y, Z)>
\]

\[
A = p(h(Y, Z), f(g(Y)), f(h(Y, Z))) \\
B = p(h(Y, Z), f(Z), f(h(U, V))) \\
S = \{X \rightarrow h(Y,Z)\} \\
\text{(diff A B) = } <g(Y), Z>
\]
A = p(h(Y, Z), f(g(Y)), f(h(Y, Z)))
B = p(h(Y, Z), f(Z), f(h(U, V)))

S = \{X -> h(Y,Z)\}
(diff A B) = <g(Y), Z>

A = p(h(Y, g(Y)), f(g(Y)), f(h(Y, g(Y))))
B = p(h(Y, g(Y)), f(g(Y)), f(h(U, V,)))

S = \{X -> h(Y, g(Y)), Z -> g(Y)\}
(diff A B) = <Y, U>

A = p(h(Y, g(Y)), f(g(Y)), f(h(Y, g(Y))))
B = p(h(Y, g(Y)), f(g(Y)), f(h(Y, V,)))

S = \{X -> h(Y, g(Y)), Z -> g(Y), U -> Y\}
(diff A B) = <g(Y), V>

A = p(h(Y, g(Y)), f(g(Y)), f(h(Y, g(Y))))
B = p(h(Y, g(Y)), f(g(Y)), f(h(Y, g(Y))))

s = \{X -> h(Y, g(Y)), Z -> g(Y), U -> Y, V -> g(Y)\}
(diff A B) = <empty>
LIST NOTATION

We could choose "dot" as a binary function to take the place of "." in SCHEME.

We could choose "nil" as a constant to take the place of #f, or (), in SCHEME.

Then \([X \mid T]\) is syntactic sugar for \(\text{dot}(X,T)\),

Similarly, \([a, b, c]\)

is syntactic sugar for \(\text{dot}(a, \text{dot}(b, \text{dot}(c, \text{nil})))\)

and \([]\) is syntactic sugar for nil.

When Prolog matches \([X \mid T]\) with \([a, b, c]\),
the binding is \(\{X \rightarrow a, T \rightarrow [b, c]\}\)

But ask Prolog to match \(\text{dot}(X,T)\)
with \(\text{dot}(a, \text{dot}(b, \text{dot}(c, \text{nil})))\)

The binding is

\(\{X \rightarrow a, T \rightarrow \text{dot}(b, \text{dot}(c, \text{nil}))\}\)

But this is still \(\{X \rightarrow a, T \rightarrow [b, c]\}\)