Exchange Rates

Chapter 14
Basics

• Definition
 – Direct (American) dollar price of foreign currency = dollars/foreign currency
 – Indirect (European) foreign currency price of domestic currency = foreign currency/dollar

• Changes in exchange rates
 – Appreciation of dollar
 Increase in value of dollar
 = decrease in dollars/foreign currency
 = increase in foreign currency/dollar
 – Depreciation of dollar (opposite)
Relative Prices

• Dollars/euro = 1.085
• Euros/dollar = 1/1.085 = 0.922
• Problem: Five star restaurant meal in Paris costs €100 and similar meal in NY costs $105. Which meal is more expensive?
 – Compare in dollars – dollar price of Paris meal
 €100 × 1.085 = $108.50
 – Compare in euros – euro price of NY meal
 $105 × 0.922 = €96.81
Relative Prices and Exchange Rates

- Prices are relatively sticky
- Exchange rates are highly volatile
- When exchange rate changes and price levels don’t, relative price changes
 - Price of US goods P
 - Dollar price of European goods $E/€ \times P_€$
 - Relative price of US goods
 \[\frac{P_\$}{(E/€ \times P_€)} \]
Inflation, Relative Prices and Exchange Rates

- In countries with high inflation, prices are not sticky
- When $E_{peso} / \$ \text{ increases} $
 \[P_{peso} < E_{peso} / \$ \times P_{\$} \]
 Peso goods are relatively cheap
- Excess demand for peso goods increases P_{peso} relative to $P_{\$}$
- Domestic currency depreciation is inflationary
Foreign Exchange Market

• Participants
 – Commercial banks
 • Customer needs
 • Interbank market – quantities of $1 million or more
 – Firms
 – Non-bank financial institutions
 – Central banks
 • Intervene with purpose of influencing exchange rate
Foreign Exchange Market Characteristics

• Major market locations
 – London, Frankfort, Tokyo, Singapore, New York
 – 24 hour trading
• Daily volume of trade in 2010 was $4 trillion (GDP in 2009 was 14.3 trillion)
• Arbitrage assures prices across markets equal
• Vehicle currency
 – 85% of interbank transactions in April 2010 were in US dollars
 – Liquidity
Foreign Exchange Contracts

- **Spot** exchange rate – exchange rate set today for contemporaneous exchange (2 business days)
- **Forward** exchange rate – contract set today for future exchange – standard intervals of 30, 90, 180, and other
 - Merchants use to hedge exchange risk
 - Expect payment in yen in 90 days
 - Buy dollars to be delivered for yen in 90 days and eliminate risk of exchange rate change
Foreign Exchange Contracts (cont)

- **Foreign Exchange Swap** = spot sale combined with a forward repurchase
 - Take advantage of good interest rate on 90 day Euro asset – buy Euro’s today and simultaneously sell in 90 days
- **Future Exchange** = contract arranged by a third party for promise to deliver a standard amount of foreign currency on a standard future date
 - Primary difference from forward rate is ability to buy and sell in an organized market
- **Option** = right, but not the obligation, to buy or sell a standard amount of currency at a standard price at any time up to an expiration date
 - Put option is the right to sell foreign exchange
 - Call option is the right to buy foreign exchange
 - Use to speculate on future exchange rate changes
Nominal Returns

- E is dollars per Euro
- Nominal return (dollar values)
 - Dollar value of investment in period t+1 relative to value in period t (gross)
 - Dollar bond $1 + R$
 - $\ln(1 + R) \sim R$
 - Euro bond $[(1 + R) \times E_{t+1}] / E_t$
 - $\ln([(1 + R) \times E_{t+1}] / E_t) \sim R + (\ln E_{t+1} - \ln E_t) \sim R + (E_{t+1} - E_t) / E_t$
Real Returns

- **Real return (values in terms of purchasing power)**
 - real value of investment in period $t+1$ relative to value in period t (gross)
 - Dollar bond $P_t[1 + R\$]/P_{t+1}$
 - $\ln (P_t[1 + R\$]/P_{t+1}) \sim R\$ - (P_{t+1} - P_t)/ P_t$
 - Euro bond $P_t [(1 + R\€)\times E_{t+1}]/E_tP_{t+1}$
 - $\ln (P_t [(1 + R\€)\times E_{t+1}]/E_tP_{t+1}) \sim R\€ + (E_{t+1} - E_t)/ E_t - (P_{t+1} - P_t)/ P_t$
Equilibrium in Foreign Exchange Market

Demand for assets depends on
- Nominal rates of return
- Risk
- Liquidity

Interest rate parity
- Define E_t as dollars per foreign currency
 \[R_\$ = R_\€ + \frac{(E_{t+1} - E_t)}{E_t} \]
- Let expected future exchange rate, $R_\$, and $R_\€$ be exogenous and E_t be endogenous
 - Graph $R_\$ against E_t
 - Graph $R_\€ + \frac{(E_{t+1} - E_t)}{E_t}$ against E_t
Changes in Exogenous Variables

- $R_\text{\$}$ increases
- $R_\text{€}$ increases
- E_{t+1} increases
Covered Interest Rate Parity

• Use the forward market
• Replace E_{t+1} with F_t
• Covered interest rate parity

\[R_\$ = R_€ + \frac{(F_t - E_t)}{E_t} \]