1. Good Y is a gross substitute for good X if an increase in the price of Y causes an increase in demand for good X. Good X is a gross complement for good Y if an increase in the price of X causes a decrease in demand for Y. It is possible to draw a price increase in Y causing an increase in demand for X and a price increase in X causing a decrease in demand for X with indifference curves that could come from the same consumer.

2. Show graphically.

3. a. The amount spent on good X equals $P_X X$, where P_X is the price of good X and X is the quantity purchased of good X. This equals $I/10$, where I is income. Therefore $X = \frac{I}{10P_X}$.

b. The elasticity of demand for good X with respect to income is $\frac{dX}{dI} I X$. We have $\frac{dX}{dI} = \frac{1}{10P_X}$. So the elasticity of demand for good X with respect to income is $(\frac{1}{10P_X})(\frac{1}{I})(10P_X) = 1$. The elasticity of demand for good X with respect to P_X is $(\frac{dX}{dP_X})(\frac{P_X}{X})$. Since $\frac{dX}{dP_X} = -\frac{I}{10P_X^2}$, and $\frac{P_X}{X} = 10P_X^2/I$, we have $(\frac{dX}{dP_X})(\frac{P_X}{X}) = -1$. The elasticity of demand for X with respect to the price P_Y of another good Y is 0. Since the consumer always spends $1/10$ of his income on X, changes in the price of any other good do not affect his demand for good X.

4. a. Laspeyre price index equals (amount spent on base year bundle with current year prices)/(amount spent on base year bundle with base year prices). This is $(2 \cdot 2 + 3 \cdot 4)/(2 \cdot 2 + 2 \cdot 4) = 16/12 = 1.33$.

b. It is not possible to tell that the consumer was better off in 1991. The amount spent in 1991 was $4 \cdot 2 + 1 \cdot 3 = 11$. With an income of 11, the consumer could not purchase the bundle $(2, 4)$ at 1991 prices. So we cannot say that the consumer was better off in 1991.

c. In 1990 the consumer spent 12 on the market basket $(2, 4)$. At 1990 prices, the market basket $(4, 1)$ cost only 10 and thus was in the interior of the budget set. Therefore $(2, 4)$ must be strictly preferred to $(4, 1)$, so the consumer was better off in 1990.

d. The budget line for 1991 is $2X + 2Y = 12$. The budget line for 1990 is $3X + 2Y = 14$. The two budget lines intersect at $(2, 4)$. If the consumer had chosen $(2, 4)$ in 1990 and $(4, 1)$ in 1991, it would mean that they chose $(2, 4)$ when $(4, 1)$ was affordable and then chose $(4, 1)$ when $(2, 4)$ was affordable. This is impossible if the consumer had the same standard preferences in the two years.