Part I: Introductions
- Fill out course questionnaire
- Introduction of course instructor
- Course participants introduce themselves

Part II: Course Formalities
- Course overview
- Syllabus: Nuts & bolts
 - E-mail and the course LISTSERV
 - Course website and materials updating
 - Exams and grading
 - Rescheduling next week's class.
- Dates/times for class meeting, optional lab
- Ordering & using Stata

Break
- Handle any registration issues
- Form homework groups during the break

Part III: The Ordinary Least Squares Model and Review of Basic Statistical Ideas
- Comparing OLS to randomized controlled trials (RCT) – the “gold standard” in causal research
 - Why randomization is your best friend
 - Analogizing from research in the hard sciences
- Why OLS instead of RCT in social science research
- Why does OLS work if it is second best?
- Basic OLS model
 - Minimizing squared differences
 - Estimating coefficients of relationships
 - Coefficients as realizations of random variables
 - Estimates of model parameters
 - Testing coefficients
 - Understanding the standard error
 - Understanding the concept of disturbance term AKA error term, residual, etc.
 - Regressions as estimates of conditional mean
- The Classical Linear Regression Model and the Gauss-Markov Conditions
- When estimators are good estimators
 - Unbiased
 - Consistent
 - Efficient
- OLS: The Best Linear Unbiased Estimator (BLUE)

Optional Stata Introduction

<table>
<thead>
<tr>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Readings per the syllabus – including those listed for the first class meeting</td>
</tr>
<tr>
<td>- Join the course LISTSERV, if you haven’t already</td>
</tr>
<tr>
<td>- Purchase of Stata, if you so desire</td>
</tr>
<tr>
<td>- Form a study group</td>
</tr>
<tr>
<td>- Complete Problem Set #0, using A Brief Introduction to Stata for assistance as needed</td>
</tr>
</tbody>
</table>
. use "H:\Rockefeller Courses\PAD705\Problem Set Data\gender.dta"

. regress salary sex

. predict salhat
(option xb assumed; fitted values)

. reg salary age

. predict agehat
(option xb assumed; fitted values)

. predict sexhat
(option xb assumed; fitted values)

. reg salary age sex

. predict salhat
(option xb assumed; fitted values)