
INEN 202 Introduction to Computer Programming

 Introductory programming course based on the C language

 Instructor: Dr. Y. Alex Xue, Associate Professor of NSE

◼ Office: NFE 4315

◼ Office Hour: MW 1:30-2:30 PM

◼ E-mail: yxue@albany.edu

 Grading

◼ Two in-semester exams (16 points each).

◼ One final take-home programming project (28 points)

◼ Eight programming projects (5 points each)

◼ Check assignment due date on the course website

◼ Discussion encouraged but work independently please!

 Required Text

 K.N. King, C Programming: A Modern Introduction, 2nd Edition (W.W.
Norton & Company, 2008)

 Ch. 21-Ch. 27 contain reference materials on C standard library.

 Further materials on C programming can be found at the course website

Weekly Course Topics

 Part I

 Formatted Input/Output

 Operators and Expressions

 Selection/Looping Statements

 Part II

 Basic Data Types

 1-D Array

 Preprocessor Macros

 Functions and Program Organization

 Part III

◼ Pointers

◼ Pointers and Arrays

◼ Strings, Complex Numbers…

Week 1 Introducing C

 Introducing Computer Programming

◼ Programming and Programming Language

◼ History of C

◼ Strength and Weakness of C

 Your First C Program

◼ Writing, Compiling and Linking

◼ Cygwin/gcc/notepad++

Computer Programming and Programming Language

▪ Computer programming is a process that leads from an original

 formulation of a computing problem to executable programs.

▪ It involves activities such as analysis, understanding, and

generically solving such problems resulting in an algorithm, …,

implementation (or coding) of the algorithm in a target programming

language, …

▪ The algorithm is often only represented in human-parsable form

and reasoned about using logic. Source code is written in one or

more programming languages.

▪ The purpose of programming is to find a sequence of instructions

that will automate performing a specific task or solve a given problem.

▪ A programming language is an artificial language designed to

communicate instructions to a machine

Programming Languages

Programming Languages Popularity

Programming Languages Popularity: 2019

Origins of C

 C is a by-product of UNIX, developed at Bell Laboratories by Ken

Thompson, Dennis Ritchie, and others.

 Thompson designed a small language named B.

 B was based on BCPL, a systems programming language developed in

the mid-1960s, which in turn was based on Algol.

 By 1971, Ritchie began to develop an extended version of B. He called

his language NB (“New B”) at first.

 As the language developed further, he changed its name to C.

 The language was stable enough by 1973 that UNIX could be rewritten

in C.

Standardization of C

 K&R C

◼ Described in Kernighan and Ritchie, The C Programming

Language (1978)

◼ De facto industry standard

 C89/C90

◼ ANSI standard X3.159-1989 (completed in 1988; formally

approved in December 1989)

◼ International standard ISO/IEC 9899:1990

 C99

◼ International standard ISO/IEC 9899:1999

◼ Incorporates changes from Amendment 1 (1995)

C-Based Programming Languages

 C++ (invented by Bjarne Stroustrup at Bell Lab, 1979-) includes

all the features of C, but adds classes, templates and other

features to support object-oriented and generic programming

features.

 Java is based on C++ and therefore inherits many C features.

 C# is a more recent language derived from C++ and Java.

 Python is a high-level language that is implemented using C.

 MATLAB, originally based on FORTRAN, is implemented in C

Strengths of C

 Efficiency

 Portability

 Relatively small language

 Low-level constructs

Weaknesses of C

 Programs can be error-prone.

 Programs can be difficult to understand.

 Programs can be difficult to modify.

 Think about Programming Languages vs. Natural Languages vs.

Mathematics

 Context

 Grammar/Rule

 Style

Effective Uses of C

 Adopt a sensible set of coding conventions.

 Avoid “tricks” and overly complex code.

 Stick to the standard.

 Learn how to avoid pitfalls.

 …

“Hello, World!”: Your First C Program

#include <stdio.h>

int main(void)

{

 printf("To C, or not to C: that is the question.\n");

 return 0;

}

 This program might be stored in a file named pun.c.

 The file name doesn’t matter, but the .c extension is often required.

Compiling and Linking

 Before a program can be executed, three steps are usually necessary:

◼ Preprocessing. The preprocessor obeys commands that begin with #

(known as directives)

◼ Compiling. A compiler translates then translates the program into

machine instructions (object code).

◼ Linking. A linker combines the object code produced by the compiler with

any additional code needed to yield a complete executable program.

 The preprocessor is usually integrated with the compiler.

Compiling and Linking with gcc

 gcc is the GNU Project C compiler

 A command-line program

 gcc takes C source files as input

 (Save your pun.c file in the folder c:/cygwin/home/your_user_name)

 To compile and link the pun.c program under UNIX, enter the

following command in a terminal or command-line window:

 % gcc pun.c

 Outputs an executable by default: a.exe

 Linking is automatic when using gcc; no separate link command is

necessary.

Compiling and Linking with gcc

 To compile with a different executable output
name simply type:

 % gcc -o pun pun.c -std=c99 -Wall

◼ All gcc options are prefixed with hyphen ‘-’ !

◼ ‘-o’ option tells the compiler to name the executable pun

◼ ‘-Wall’ tells it to print out all relevant warnings (very useful!!!)

 To execute the program in cygwin, simply type:

 % ./pun.exe

Compiling and Linking

 Before a program can be executed, three steps are usually necessary:

◼ Preprocessing. The preprocessor obeys commands that begin with #

(known as directives)

◼ Compiling. A compiler translates then translates the program into

machine instructions (object code).

◼ Linking. A linker combines the object code produced by the compiler with

any additional code needed to yield a complete executable program.

 The preprocessor is usually integrated with the compiler.

 Preprocessing, Compiling and Linking are integrated when using gcc

 $ gcc -o pun pun.c -O -Wall -std=c99

 $./pun.exe

General Form of a Simple C Program

 Simple C programs have the

form

 directives

 int main(void)

 {

 statements

 }

 C uses { and } in much the same

way that some other languages use
words like begin and end.

 Even the simplest C programs rely

on three key language features:

◼ Directives

◼ Functions

◼ Statements

#include <stdio.h>

int main(void)

{

 printf("To C, or not to C: that is the question.\n");

 return 0;

}

	Slide 1: INEN 202 Introduction to Computer Programming
	Slide 2: Weekly Course Topics
	Slide 3: Week 1 Introducing C
	Slide 4: Computer Programming and Programming Language
	Slide 5: Programming Languages
	Slide 6: Programming Languages Popularity
	Slide 7: Programming Languages Popularity: 2019
	Slide 8: Origins of C
	Slide 9: Standardization of C
	Slide 10: C-Based Programming Languages
	Slide 11: Strengths of C
	Slide 12: Weaknesses of C
	Slide 13: Effective Uses of C
	Slide 14: “Hello, World!”: Your First C Program
	Slide 15: Compiling and Linking
	Slide 16: Compiling and Linking with gcc
	Slide 17: Compiling and Linking with gcc
	Slide 18: Compiling and Linking
	Slide 19: General Form of a Simple C Program

