Lecture contents

- Other scattering mechanisms
 - Piezoelectric
 - Optical non-polar phonons
 - Optical polar phonons
 - Ionized impurities
 - Neutral impurities
 - Alloy

1

Scattering mechanisms: Piezoelectric scattering

- Compound semiconductors with lack of inversion symmetry
- Interaction through polarization [electromechanical tensor times strain tensor]:
- Acoustic phonon scattering: almost elastic
- Interaction increases at low *q*-vectors (due to electrostatic interaction:
- Scattering time:

$$au_k \propto E^{1/2}$$

• Mobility will be affected by phonon density:

$$\mu \propto (kT)^{-1/2}$$

Table 8.2 Piezoelectric coefficients e_{14} in C/m² for cubic III–V and II–VI semiconductors (after Ridley 1988)

III–V	e_{14}	II–VI	e_{14}
GaAs	0.160	ZnS	0.17
GaSb	0.126	ZnSe	0.045
InAs	0.045	ZnTe	0.027
InSb	0.071	CdTe	0.034

$$\boldsymbol{\mathcal{E}}_{pz} = -\frac{4\pi}{\varepsilon} P_{pz} = -\frac{4\pi}{\varepsilon} \left[\hat{\boldsymbol{e}}_m \cdot \hat{\boldsymbol{\varepsilon}} \right]$$

$$H_{pz} = e \frac{\mathcal{E}_{pz}}{q}$$

$$10^{8}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{6}$$

$$10^{6}$$

$$10^{5}$$

$$10^{6}$$

$$10^{5}$$

$$10^{6}$$

$$10^{5}$$

$$10^{6}$$

$$10^{5}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

$$10^{7}$$

Debye screening length

Range of long wavelengths of phonons which scatter carriers is determined by Debye screening length L_D

Poisson equation (field divergence due to

Continuity equation without sources:

- Debye or dielectric relaxation time:
- Debye screening length (diffusion during τ_D)

$$\tau_D = \frac{\varepsilon}{4\pi\sigma} = \frac{\varepsilon}{4\pi e n \mu} \quad \text{using} \quad \sigma = e n \mu$$

$$L_D = \sqrt{D\tau_D} = \left(\frac{\varepsilon kT}{4\pi e^2 n}\right)^{1/2} \quad \text{using} \quad D = \frac{k_B T}{e} \mu$$

Piezoelectric scattering by long-wavelength acoustic phonons

- Piezoelectric acoustic phonon scattering rate decreases with electron energy (small q-vector of phonons involved)
- Due to screening of long-range field by carriers, very long-wavelength phonons are ineffective for scattering
- Range $(2/q_0)$ is determined by Debye screening length L_D

From Yu and Cordona, 2003

Scattering mechanisms: Optical phonons

Scattering mechanisms: polar optical phonons

• Polar optical phonon scattering is due to scattering by polarization field generated by optical phonons (Frölich interaction)

$$H_{pol} \propto e_{eff} u \propto e_{eff} e^{iqr}$$

• Similar to piezoelectric acoustic phonon scattering:

$$H_{pol} \propto rac{1}{q}$$
 $au_k \propto E^{1/2}$

• At high temperatures

$$k_B T >> \hbar \omega_{ph} \qquad \mu \propto (kT)^{-1/2}$$

Scattering rates of polar optical and acoustic phonons in GaAs at room temperature

Scattering mechanisms: polar optical phonons

• Polar optical phonon scattering is dominant at room temperature in high-purity III-V's

Fig. 5.3. Momentum relaxation times of a conduction electron in the Γ valley of GaAs as a function of electron energy. Scattering by: small wave vector LA phonons (τ_{ac}) via the deformation potential interaction; small wave vector optical phonons (τ_{po}) via the Fröhlich interaction and via zone-edge phonons from Γ to the X valleys (τ_{1-2}) calculated by *Conwell* and *Vassel* [5.8]. Notice that the deformation potential for the Γ to X intervalley scattering has been assumed to be either 1×10^8 or 5×10^8 eV/cm. These values are smaller than the now accepted value of 10^9 eV/cm [5.9]

Experimental and theoretical (polar optical phonon scattering) results on ultrapure GaAs mobility

From Yu and Cordona, 2003

Intervalley carrier scattering

A - intravalley acoustic phonon scattering
190K intervalley scattering by 2x 16mev TA phonons
630K intervalley scattering by 54mev LO phonons

From Yu and Cordona, 2003

Scattering mechanisms: ionized impurities

Ionized impurity scattering: elastic (no energy change in the scattering event)

Carriers with lower energy are scattered stronger

$$\pi \propto E^{3/2}$$
 $\mu \propto (kT)^{3/2}$

Ionized impurity scattering is usually the dominant mechanism at low temperatures

Mobility of carriers in Si and GaAs at room temperature (slope is determined by ionized impurity scattering)

Scattering mechanisms: neutral impurities

Scattering rate can be derived from "collisions of carriers with defect centers" :

$$\frac{1}{\tau} = N\sigma v$$

Relaxation time does not depend on energy and averaging procedure is not needed.

$$\mu = \frac{e\tau}{m^*} \propto (kT)^0$$

Scattering of electrons and holes can be different .

From Seeger, 1973

Scattering mechanisms: alloy scattering

Interaction with field generated due to ٠ fluctuations of atomic potential

Scattering probability does not depend on *k*-vectors and therefore, on electron

energy (x is a composition of alloy)

В В Α в A Α A V(r) $\frac{1}{-\infty} (1-x)$ \mathcal{T}

The strongest scattering at x = 0.5

Averaging over the density of states :

EXAMPLE 5.2 Calculate the alloy scattering limited mobility in Al_{0.3}Ga_{0.7}As at 77 K and at 300 K. Assume that the alloy scattering potential is 1.0 eV. The relaxation time at 300 K is $(m^* = 0.07 \ m_0)$.

$$\frac{1}{\langle \langle r \rangle \rangle} = \frac{3\pi V_0 (U_{all})^2 x (1-x) m^{*3/2} (k_B T)^{1/2}}{8\sqrt{2}\hbar^4 (0.75)}$$
$$= 2.1 \times 10^{12} \text{ s}$$

Here we have used x = 0.3, $V_0 = a^3/4$ with a = 5.65 Å. The value of $\langle \langle r \rangle \rangle$ is 4.77×10^{-13} s. The mobility is then

$$\mu_{all}(300 \text{ K}) = 1.2 \times 10^4 \text{ cm}^2/\text{V} \cdot \text{s}$$

The mobility goes as $T^{-1/2}$ which

 $\mu_{all}(77 \text{ K}) = 2.36 \times 10^4 \text{ cm}^2/\text{V} \cdot \text{s}$

From Singh, 2003

$$all(500 \text{ K}) = 1.2 \times 10^{\circ} \text{ cm} / \text{V} \cdot \text{S}$$

$$\mu \propto (kT)^{-1/2}$$

Mechanisms of carrier scattering

Temperature dependence of drift mobility

Scattering	$\mu = A(kT)^p$		Hall fastar	
process	A	p	Hall factor	
Acoustic phonons, deformation potential Acoustic phonons, piezoelectric scattering	$\frac{4e\pi^{1/2}Mc_s^2\hbar^4}{3(2m^5)^{1/2}E_1^2k^{3/2}V_0}$ $\frac{5e^2Mc_s^2\hbar^2}{2\beta^2 eV_0(2k\pi^3m^3)^{1/2}}$	—3/2 —1/2	$\frac{3\pi}{8} = 1,18$ $\frac{45\pi}{128} = 1,105$	
Nonpolar optical phonons, $kT \gg \hbar \omega_0$	$\frac{4e\pi^{1/2}M\hbar^4\omega_0^2}{3V_0E_0^2\left(2m^5k^3\right)^{1/2}}$	3/2	$\frac{3\pi}{8} = 1,18$	
Polar optical phonons $kT \gg \hbar\omega_0$	$\frac{eV_0M_1M_2\hbar^2\omega_0^2\sqrt{2}}{3(Ze^2)^2(M_1+M_2)}\times \times (\pi^{3}km^{3})^{-1/2}}$	-1/2	$\frac{45\pi}{128} = 1,105$	
Ionized impurities	$\frac{8\varepsilon^2 (2k^3)^{1/2} (m\pi^3)^{-1/2}}{e^3 N_t \ln\left(\frac{24mkT}{\hbar^2} r_0^2\right)}$	3 /2	$\frac{315\pi}{512} = 1,93$	
Neutral impurities	<u>me³</u> 20ећ ³ N ₀	0	1	

From Kalashnikov, 1977

Plasma waves (plasmons)

Field due to displacement in electron plasma (relative to ions)

Motion equation:

$$\mathcal{E} = \frac{d^2 u}{\varepsilon}$$
$$m^* \frac{d^2 u}{dt^2} = -e\mathcal{E}$$

 $4\pi neu$

Solution: Oscillations with plasma frequency

$$\omega_p^2 = \frac{4\pi e^2 n}{\varepsilon m^*}$$

Electron-plasmon scattering rate for GaAs at room temperature for $n=1x10^{17}$ cm⁻³

