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WAFFLES: IRREDUCIBLE REPRESENTATIONS OF METACYCLIC
GROUPS

ANDREA HEALD*, MARK PEARSON!, AND MATTHEW ZAREMSKY#

Abstract. We present a geometric model for metacyclic groups called a “waffle,” and we utilize
waffles to find irreducible representations of these groups.

1. Introduction. Representation theory is a bridge between the abstract world
of groups and the concrete world of matrix algebra. A representation is a homomor-
phism that maps every element of a group to some matrix and thus offers a different
vantage point from which to study groups.

Every representation is composed of irreducible representations, which are the fun-
damental “building blocks” of representations much in the same way that prime num-
bers are the fundamental building blocks of numbers. In the case of C3 = (a | a® = 1)
(and any cyclic group, in fact), the irreducible representations are all of degree 1,
meaning each element is represented by a 1 x 1 complex matrix —i.e. a complex num-
ber. Since this group is cyclic, it suffices to define a representation on the generator.
Any representation of the group must satisfy the same relations as the group - in this
case, a® = 1 — and thus each of the three irreducible representations of C3 maps the
generator of C3 to a complex third root of unity. If ¢ = ¢2**/3, the three irreducible
representations of C3 are:

.

priam— 1, prrare, p3ia— e’

Because p; is a homomorphism that maps the generator of C3 to 1, it maps every
element of C3 to 1. This irreducible representation is called the trivial representation,
and the trivial representation is one of the irreducible representations of any group,
regardless of how many generators the group has. But every nontrivial group also
has other irreducible representations, and these are in general more difficult to find,
especially when the group has more than one generator or is nonabelian.

In this study we examine the representation theory of metacyclic groups, which
have two generators and are nonabelian. The dihedral groups — the groups of rotation
and reflection symmetries of regular n-gons — are good examples of metacyclic groups.
Understanding the elements of dihedral groups as rotations and reflections of a regu-
lar n-gon is a very palpable way to examine dihedral groups. The ability to diagram
dihedral groups also turns out to be advantageous in finding their irreducible represen-
tations. We extend this insight to a broader class of metacyclic groups and provide a
visual “waffle” model for these groups. From the waffle models for metacyclic groups,
we are able to obtain some (but not all) of the irreducible representations of these
groups. The visualizations of these metacyclic groups are in general not as intuitive
as the dihedral visualizations, but in terms of finding irreducible representations, they
are just as useful.

2. Metacyclic Groups and Representations. DEFINITION 2.1. A group G
is metacyclic if it contains a cyclic normal subgroup H such that G/H is also cyclic.

* University of Virginia
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Metacyclic groups are generally expressed by means of a group presentation of the
form

G=(a,b|a"=b"=1,a°=0b"bab~ ' =a")

where n,m,s,t and 7 are positive integers subject to the constraints ¢ | m, r* = 1
(mod n), and sr = s (mod n). H = (a) is a cyclic normal subgroup, and G/H = C,.

NoTE 2.2. Throughout this study, we will examine metacyclic groups for which
s=mn and t =m, i.e. metacyclic groups with the presentation

G={(a,b|a™=b"=1,bab! =a")

where 7™ =1 (mod n) and |G| = nm. When we refer to “metacyclic group,” we shall
mean the subclass of metacyclic groups that have presentations of this form.

We conclude this section with some elementary material about representation
theory (cf. [4], [5], [6]). For further background in representation theory, see also [2].

DEFINITION 2.3. A representation p of the group G is a homomorphism p: G —
GL(V), where V is some vector space.

NOTE 2.4. We will be studying complex representations throughout, and so we
take V = C? for some d, called the degree of the representation.

The building blocks of representations are the irreducible representations, which
are intimately related to invariant subspaces of the vector space V.

DEFINITION 2.5. Let p: G — GL(V) where V is some vector space, be a repre-
sentation of G, and let W be a subspace of V. Then W is invariant if p(g) -z € W
for all g € G and x € W, where p(g) - = denotes the action of the matriz p(g) on the
vector x € W.

With this, we can define what an irreducible representation is.

DEFINITION 2.6. An irreducible representation p: G — GL(V) is a representa-
tion such that V has no proper, nontrivial invariant subspaces.

A group may have several irreducible representations, just like a number can have
many prime factors. It is often desirable to find every irreducible representation of a
group. The following theorem (see [5] or [6] for a proof) provides a way of counting
the number of irreducible representations.

THEOREM 2.7. The number of irreducible representations of a group G is equal
to the number of conjugacy classes of G.

Thus, finding the conjugacy classes of the group is an important component of
finding all the irreducible representations of a group.

3. Making Waffles. A waffle is a geometric model for a metacyclic group that
encodes information about its conjugacy classes. As such, waffles are useful tools in
the search for irreducible representations. The name for these geometric models was
inspired by the resemblance of the model for the metacyclic group SD1s = (a,b | a'® =
b = 1,bab™! = a”), shown below, to a waffle:

We begin with a recipe for making waffles:

1. Begin with a metacyclic group G = (a,b | a™ = b™ = 1,bab™! = a”).

2. Draw the vertices e2*™/™ (for k = 1,...n) of a regular n-gon in the complex
plane. Vertex e*7#/" will be labeled k and will correspond to the element a*
of G.

3. Based on the conjugation relation bab~! = a”, draw an arrow between conju-
gate vertices to track the progression of successive conjugations by b. Draw a
circle around vertices that represent conjugacy classes with a single element.
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8 ® ®16
9 15
L1000 L . 14
n o, 13

Fi1G. 1. The waffle for SD1s

4. The resulting diagram is a waffle for the metacyclic group G.
Since (a) is normal, the conjugacy classes of that subgroup are fully contained in
the waffle and are an important subset of the conjugacy classes of G.
EXAMPLE 3.1. The waffle for Dg = (a,b | a® = b?> = 1,bab™! = a™ '), the dihedral
group of order 16, looks like this:

40 ©8

6
FI1G. 2. The waffle for Dg

The vertices k = 1,2,...,8 of the octagon represent the elements a* of the cyclic
subgroup generated by a, and the vertical arrows represent the action of conjugating
elements in the waffle by b. These arrows show that {a,a’} forms a conjugacy class,
as do {a?,a®} and {a®,a°}. The element a® = 1 forms its own conjugacy class, as
does a*, and so these conjugacy classes are indicated by circles.

EXAMPLE 3.2. The metacyclic group

Gar = (a,b | a® =% = 1,bab™! = a?)

has a somewhat more intricate waffle:

This shows that a, o, and a” all are in the same conjugacy class, as are a®, a®,
and a®. Furthermore, the waffle records the order in which elements of H = Co(a)
are conjugated to one another, which will be important later.

EXERCISE 3.3. Construct the waffle for SDg = (a,b | a® = b* = 1,bab™! = a?).
What are the conjugacy classes shown in the waffle? (Hint: there are 5.)

8
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FIG. 3. The waffle for Gaz

EXERCISE 3.4. Construct the waffles for the Frobenius group of order 20, Fyy =
(a,b | a® =b* = 1,bab~! = a?), and for the group Fo; = (a,b | a” =% = 1,bab™"
a?).

4. Representations from the Waffle. For a metacyclic group G = (a,b | a™ =
b™ = 1,bab~! = a”), it suffices to define a representation p : G — GL(d,C) on the
generators a and b in such a way that the matrices p(a) and p(b) satisfy the relations
of the group. As we will show, the waffle for a metacyclic group affords an easy way to
specify the matrices p(a) and p(b), and thus waffles give representations of metacyclic
groups. Furthermore, the representations they give are irreducible.

Obtaining irreducible representations of a metacyclic group from its waffle requires
a slight shift in how we view the waffle. Instead of considering each vertex k of the
polygon as a power of the generator of the cyclic normal subgroup, we now consider
the waffle in the complex plane and view each vertex as an ' root of unity, where
the vertex k = 1 corresponds to e2™/™ and the vertex k = n corresponds to 1 € C.!

NOTE 4.1. For notational convenience, let e, = €2™/™ and wy, = e2™/™ through-
out, where n is the order of a and m the order of b.

We now give the method for obtaining an irreducible representation from the
waffle:

1. For each vertex k, beginning at k = 1 and proceeding counterclockwise around
the waffle, let d, be the number of elements in the conjugacy class of a*. Then,
for each distinct conjugacy class in the waffle, produce the dy x dj matrix
p(a) as follows:

(a) If the vertex k represents a conjugacy class with a single element a® (in
which case dg = 1), then map a to the complex number k.

(b) If the vertex k is linked to dr > 1 other vertices by conjugation lines,
then map a to the dp x dj diagonal matrix whose entries are the roots
of unity corresponding to the dj, elements in the conjugacy class of ak.
The roots of unity are listed down along the diagonal in the same order
that b conjugates a*.

2. Map b to the di x dy permutation matrix representing the permutation
(1dgde—1...2).

The distinct representations obtained by this method are the irreducible represen-
tations of the metacyclic group that are contained in the waffle. Since each conjugacy

h root of unity, but we choose

1We could have the vertex k = 1 correspond to any primitive n®
en = €2™/™ to make the diagrams easier to use.
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class corresponds to-an irreducible representation, the number of irreducible represen-
tations we obtain from the waffle in this way will be equal to the number of conjugacy
classes contained in the waffle.

Because the waffle does not contain all conjugacy classes of the group, we will
not be able to read off from the waffle all the irreducible representations of the group.
However, in the next section we will discuss how to obtain some of the “missing”
irreducible representations. In the last section of the paper we will discuss why the
method outlined above produces irreducible representations of metacyclic groups and
some of the technical considerations involved in producing all the irreducible repre-
sentations of metacyclic groups.

Before passing to these considerations, though, we give a few examples of how
waflles can be used to produce irreducible representations of metacyclic groups.

EXAMPLE 4.2. For Dg we can find degree-1 and degree-2 irreducible representa-
tions from the waffle. (See the waffle in Ezample 3.1.)

The degree-1 irreducible representations in the waffle are indicated by the circled
vertices. Picturing the waffle in the complex plane, the circled vertices correspond
to 1 and —1. Thus, the degree-1 representations given by the waffle are a — 1 and
a — —1, while b simply maps to 1. (These degree-1 representations map b to 1, since
that is the only 1 x 1 permutation matriz.) That is, the degree-1 representations are:

pr:a—1, b—1; paiar— —1,,b—1

The degree-2 irreducible representations in the waffle are given by the conjugation
lines connecting two vertices. The element a maps to a 2 x 2 diagonal matriz with
eighth Toots of unity as entries, listed down the diagonal in order of conjugation, and
b maps to the permutation matriz corresponding to the permutation (1 2). The three
degree-2 representations contained in the waffle are:

o (0 po (0L
0 &g 10
2

. eg O 0 1

p“"“"(o ag>’ bH<1 0
3

. eg 0 01

"5"“"<0 a§>’ bH(l 0

It is straightforward to check that for each value of the index j the matrices p;(a)
and p;(b) satisfy the relations of the group.

EXAMPLE 4.3. The waffle for Ga7 contains three degree-1 irreducible representa-
tions and two degree-3 irreducible representations. (See the waffle in Example 3.2.)

The degree-1 irreducible representations in the waffle are given by:

pia—1,b—1 ppra—edb—1 pyiar—e§,b—1

The degree-3 irreducible representations in the waffle are given by:

eg 0 O 010
psra— | 0 & 0 |, b—| 0 0 1
0 0 & 100
2 0 0 010
P5 i a— 0 & 0 , b— | 0 0 1
0 0 & 1 00
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Notice that in the degree-3 irreducible representations, the diagonal entries of p;(a)
occur in the same order as the conjugation. Again, it is straightforward to check that
for each value of the indez j, the matrices p;(a) and p;(b) satisfy the relations of the
group.
EXERCISE 4.4. Find the irreducible representations given by the waffle for SDg.
EXERCISE 4.5. Find the irreducible representations in the waffles for Fyy and

Foy.

5. Finding the Missing Representations using Relations. Since the waffle
does not contain every conjugacy class of G, it cannot directly show every irreducible
representation. However, it turns out we can use the relations in the presentation of
the group, together with some results about metacyclic groups, to find some of the
missing irreducible representations. In some cases, all of the irreducible representa-
tions may be reconstructed from these results and the relations.

The following theorems are elementary results in representation theory that are of-
ten useful in constructing additional irreducible representations when some are known

(cf [5], [6]):
THEOREM 5.1. Let G be a group. If p1,...,pr are a complete set of irreducible
representations of G of degrees ni,...,nk, respectively, then
2 = |G|
i=1

THEOREM 5.2. Let G be a group and p an irreducible representation of G of
degree d. Then d divides |G|.

Using these two results and the relations of the group, we can construct all the
irreducible representations of certain metacyclic groups. The next two examples and
the two exercises that follow will demonstrate this technique.

EXAMPLE 5.3. Consider again the dihedral group

Dg={(a,b|a® =b2=1bab"t =a71)

The waffle indicates three irreducible representations of degree-2 and two of degree-
1, Theorem 5.1 says that the squares of the degrees of the missing representations must
sum to 2. Thus, there are two representations missing from the waffle, both of degree-
1.

Every degree-1 representation maps group elements to complex numbers, and since
C is abelian, the conjugacy relation will be satisfied trivially. Thus, the only remaining
constraint on b in Dg is the relation b> = 1. From this we see that in every degree-1
representation, b can map to 1 or —1. Thus, the four degree-1 representations of Dg
are:

pria—1, b1 (in waffle)
p2:a—1, b —1 (notin waffle)
ps:a— —1, b—1  (in waffle)
pgiar— =1, b —1 (not in waffle)

Combined with the three degree-2 irreducible representations of Dg contained in the
waffle (cf. Ezamples 3.1 and 4.2), this accounts for all the irreducible representations
of Dg. Notice that the representations p1 and py are lifts from the quotient Dg/{(a).

WAFFLES AND METACYCLIC GROUPS 99

Notice also that we produced all irreducible representation of Dg without computing
the conjugacy classes, which can sometimes be painstaking.
EXAMPLE 5.4. Consider the metacyclic group

Gar = (a,b | a® =b% =1,bab™* = a?).

The waffle for Ga7 shows three conjugacy classes consisting of a single element and
two conjugacy classes that contain three elements. These correspond to three degree-
1 and two degree-3 irreducible representations, respectively. (Cf. Ezamples 3.2 and
4.3.)

Theorem 5.1 indicates that the missing representations must have degrees whose
squares sum to 6. Theorem 5.2 tells us further that these degrees must also be divisors
of 27. Hence the waffle is missing 6 degree-1 representations. Since C is abelian, the
conjugacy relation bab™! = a* is again satisfied trivially for degree-1 representations.
To find other degree-1 representations, we consider the remaining relation b® = 1,
which has solutions b = 1,ws,w?. Thus, for each of the degree-1 representations
contained in the waffle, b can map to 1, ws or w3. This gives a total of nine degree-1
representations for Gor:

pria—1, b—1 (in waffle)
p2ra—1, b ws (not in waffle)
psam— 1, b w? (notin waffle)

paia—ed, b1  (in waffle)

psiarses, b ws (not in waffle)

pe:ar ey, b w? (notin waffle)

pria—el, b1 (in waffle)

psia—eS, b ws (not in waffle)

poiareS, b w? (notin waffle)
Since Gar has 11 conjugacy classes, these nine degree-1 representations and the two
degree-3 representations in Ezample 4.3 comprise all the irreducible representations
of Gor. Once again, using the relations of the group together with the waffle, we are
able to produce all irreducible representations of this metacyclic group. Again, some
of these (namely p1, py and ps) are lifts from the quotient Gar/(a).

EXERCISE 5.5. Find all the irreducible representations of SDg (Hint: there are
7.)

EXERCISE 5.6. Find all the irreducible representations of Fag and Fyy, the Frobe-
nius groups of order 20 and 21, respectively. (Hint: there are 5 in each case.)

The astute reader will undoubtedly have noticed that in the previous examples
and exercises where we were able to construct all the irreducible representations for the
group, the representations missing from the waffle were all of degree-1. The following
examples indicate that we cannot hope to be so fortunate all the time.

EXAMPLE 5.7. Let Cy denote the cyclic group of order 4 and consider the group

CyxCy={(ab|a*=0b"=1,bab" ! = a’l).

The waffle for Cqy x Cyq produces two degree-1 irreducible representations and one
degree-2 irreducible representation. (What are they?) By Theorem 5.1 the missing
irreducible representations must have degrees whose squares sum to 10, but without
computing the conjugacy classes of Cy x Cy, it is unclear whether the waffle is missing
(i) ten degree-1 representations, or (ii) siz degree-1 representations and one degree-2
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representation, or (i) two degree-1 representations and two degree-2 representations
(the only possibilities allowed by Theorems 5.1 and 5.2).

An even thornier problem is posed by the following example:

EXAMPLE 5.8. Consider the group

Us = {a,b, | a® = b5 =1,bab™? = a™!).

The waffle for Uig affords only two irreducible representations, one degree-1 and the
other degree-2. (Again, we urge the reader to construct the waffle and produce these
representations.) Theorem 5.1 indicates the missing irreducible representations must
have degrees that sum to 13, but since the missing representations may be degree-1,
-2, or -8, it is unclear which combination we are seeking without actually computing
the conjugacy classes of Uig.

Some assistance is provided by the following theorems about the number of irre-
ducible representations of degree-1 for metacyclic groups. The first is a general result
and may be found in [5] or [4]; the second is specific to metacyclic groups and may be
located in [3]. Both of these theorems involve the derived subgroup, which is defined
as follows:

DEFINITION 5.9. Let g and h be elements of a group G. The commutator of
g and h is g"*h~'gh and is denoted [g,h]. The subgroup of G generated by all the
commutators of G is called the derived subgroup of of G and is denoted G’

THEOREM 5.10. Let G be a group. The number of irreducible representations of
degree-1 is |G/G'|, where G’ is the derived subgroup of G.

THEOREM 5.11. LetG = (a,b|a" =b™ =1,a° = bt,bab~! = a”) be a metacyclic
group. The derived subgroup G of G is the subgroup (a"~1) of order n/ ged(n,r—1).

These theorems tell us that in Example 5.7 there are 8 degree-1 irreducible rep-
resentations for Cy x Cy4, and in Example 5.8 there are 6 degree-1 irreducible repre-
sentations for Ujs. By lifting representations of C4 x Cg/(a) to Cs x Cy and using
the relations of the group, we are able to produce all 8 degree-1 representations for
Cy x C4. Similarly, lifting representations of Uig/(a) to Ujs and using the relations,
we may obtain all 6 degree-1 irreducible representations for Uig. Then, by Theorem
5.1, C4 x C4 must have one degree-2 irreducible representation in addition to the one
given by the waffle, and Ujs must have two degree-2 irreducible representations in
addition to the one given by the waffle.

While waffles are not able to uncover a complete picture of the irreducible rep-
resentations of metacyclic groups in all cases, they are nonetheless useful tools for
producing irreducible representations of metacyclic groups.

6. Leaven for the waffles. In this section we describe an approach to under-
standing why waffles are such useful tools for determining irreducible representations
of metacyclic groups.

Let G = (a,b | a® = b™ = 1,bab~" = a") be a metacyclic group. Let H = Cyr(a)
denote the cyclic normal subgroup used to create the n-gon for the waffle. Geometri-
cally, we can envision multiplication by a as a rotation of the n-gon counterclockwise
by an angle of 27/n. If the vertices of the n-gon are labeled 1,2,...n counterclock-
wise, with the n'® vertex lying on 1 € C, then the permutation affecting this rotation
is (12 ... n). Let A denote the n X n matrix corresponding to the permutation
(12 ... n). The conjugation action of b permutes the vertices of the n-gon according
to another permutation dictated by the conjugation relation. Let B denote the n xn
matrix corresponding to this permutation.
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Since A corresponds to the permutation (1 2 ... n), A has n distinct eigenval-
ues, which are the nt" roots of unity, and n distinct eigenvectors v;, where v; is the
eigenvector corresponding to the eigenvalue €’,. Since A has n distinct eigenvalues, it
is diagonalizable. Relative to the eigenbasis £, the diagonal matrix for A is given by

e 0 - 0

0 &2 0
[A]e =

0 0 =1

Each eigenvector v; of A spans a 1-dimensional subspace of C" that is invariant
under A. The irreducible representations of G correspond to subspaces of C" that
are invariant under G, i.e. invariant under A and B. Obviously, a subspace of C*
is invariant under B if and only if it is invariant under B~'. As it will simplify
arguments and streamline notation somewhat, we consider B ~1 acting on C* by left
multiplication. Left multiplication by B~! defines a right action on the basis vectors
v; of the eigenbasis £ = {v1,...,v,} for C*. The following proposition allows us to
collect these 1-dimensional subspaces that are invariant under A to form subspaces of
dimension d that are invariant under the whole group G. Because these dimension-d
subspaces that are invariant under G correspond to irreducible representations of G,
we know that d will be a divisor of |G|.

PROPOSITION 6.1. B™v; = v;,.

Proof. Using the defining relations of the group, we have BAB™! = AT <
AB~! = B~'A". Consider the eigenvector v;. AB~'v; = B~1A™v; = B~ lelly; =
€"B~ly;. Thus, B~'v; is an eigenvector of A, and hence B~1vy; = v; for some j.
Since the eigenvalue of B~ 1v; is €, B~ v; = v;,.. O

Proposition 6.1 allows easy access to the subspaces of C* that are invariant under
G and hence to the irreducible representations of G. The irreducible representations
of G correspond to subspaces that are invariant under G and contain no proper sub-
spaces that are also invariant under G. We construct these subspaces inductively. If
C(v;) is invariant under B!, then C(v;) corresponds to a 1-dimensional irreducible
representation of G. Otherwise, consider C(v;, B~ v;), C(v;, B~*v;, B~2v;) and so
on until the subspace C(v;, B~v;, ..., B~%;) is invariant under G.? The inductive
construction of these subspaces ensures that they will not contain proper subspaces
that are also invariant under G. Hence these subspaces correspond to irreducible
representations of G.

For each i let W = span {v;, Vir, Vir2, ..., V;a-1} be a subspace of C" that is
invariant under G and that corresponds to an irreducible representation of G of di-
mension d. Further, let w; = v;,5-1 and W = {w1,ws, ..., wa} denote the basis for the

subspace W. Then, upon restricting B~! to W, we have B™|w (w;) = W;11 (mod )
and so B~!|y is represented by the d x d matrix corresponding to the permutation
(12 ... d). The matrix B|w then corresponds to the permutation (12 ... d)~! =
(1dd—-1 ... 2),andso

2Since B™ = I, we know that eventually these subspaces become invariant under G and will
have dimension at most m.
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01 0 0
0 0 1 0
[Blwlw =
oo0o0 - 1
1 00 -+ 0

Since the w; = v;j-1 are eigenvectors for the matrix A, the matrix representation
for the restriction of [A] to W relative to the basis W is

e 0 0

0 &7 0
[Alwlw =

0 0 e’

Hence a maps to the d x d diagonal matrix with roots of unity listed down the diagonal
in the same order that b conjugates a'.

Thus, the method outlined in Section 4 produces irreducible representations of
metacyclic groups.

Using the waffle for a metacyclic group G = (a,b | a" = b™ = 1,bab™! = a)
along with the relations of the group and some elementary results from representa-
tion theory, many, if not all, of the irreducible representations of the group may be
produced.

7. Concluding remarks. The simplicity of waffles makes them an attractive
tool for producing irreducible representations of metacyclic groups. However, it also
somewhat limits their utility. Ideally waffles would provide all the irreducible repre-
sentations of any metacyclic group. However, as we currently envision them, waffles
do not afford all the irreducible representations (cf. section 5). Furthermore, for a
general metacyclic group

G={a,b|a*=b"=1,a°="b"bab™t =a")

some of the matrices p(a) and p(b) predicted by the waffle fail to satisfy the relations
of the group, and thus waffles do not always give representations in the general case.
This is the case, for instance, with the group of quaternions g, where the matrices
predicted by the waffle do not provide representations (cf. [1], [3]). Constructing a
geometric model for metacyclic groups that provides all irreducible representations
of any metacyclic groups would need to account for these difficulties. Waffles may
provide a useful foundation for constructing a more general geometric model that
accomplishes these goals. Despite their current limitations, though, waffles are useful
in understanding the irreducible representations of metacyclic groups.

Exercise Solutions. Exercise 3.3:
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The waffle for SDsg.
Conjugacy classes from the waffle: {1}, {a,a%}, {a®,a®}, {a® a"}, {a*}
Exercise 3.4:

1
2.
05
3’ .
4
The waffle for Fy. The waffle for Fy;.

Exercise 4.4: There are five irreducible representations for SDg contained in the
waflle:
Degree-1:

1.ppra—1,b—1 2. pp:ia— —1,b—1

Degree-2: In all degree-2 representations for SDg, b — ( 10 ), and so we

give only the matrices p(a).
(e O (e o
3. p3(a) = < 0 & ) 5. ps(a) = ( 0 €l )
2
_(e O
4. ps(a) = ( 0 &8 )

Exercise 4.5:
e There are two irreducible representations in the waffle for Fy:

Degree-1:
l.prra—1,b—1

Degree-4:

es 0 0 O 01 00

. 0 e 0 0 0010

Zopiam | o g g g P2l g0 01

0 0 0 & 1 000

e There are three irreducible representations in the waffle for Fy;:

Degree-1:

1. ppra—1,b—1
Degree-3: For each of the degree-3 representations of Fyy,
010
b— | 0 0 ; we give the matrices p(a):
10

1
0
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ez 0 0 6% 0 0
2. pafa)=1| 0 € 0 3. psa)=| 0 £ 0
0 0 & 0 0 &

Exercise 5.5: In addition to the five irreducible representations given in Exercise
4.4, there are two additional representations from the relation »> = 1. From this
relation we see that b = +1. The representations where b = —1 did not appear in the
waffle because the matrices representing b had to be permutation matrices. The two
additional representations are ps : a — 1, b— —1 and p7:a— —1, br— —1.

Exercise 5.6: For Fyy we are missing three degree-1 representations, according to
Theorem 5.1. The relation b* = 1 gives us that b =— =1, +i for the degree-1 rep-
resentations; for each of these representations a — 1, as indicated in the waffle. Of
these four representations, only the representation p : a — 1,b — 1 is contained in
the waffle for Fyp.

For Fy; we are missing two degree-1 representations, according to Theorem 5.1.
The relation b = 1 gives us that b — 1,ws,w? for the degree-1 representations;
for each of these representations a +— 1, as indicated in the waffle. Of these three
representations, only the representation p:a — 1,0+ Lis contained in the waffle for
F21.
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PRIMES, TWIN PRIMES AND GOLDBACH’S CONJECTURE
PETER A. LINDSTROM*

Numerous problems in Mathematics have remained unsolved for centuries. Two
of the most famous are:

Goldbach’s Conjecture Every positive even integer n > 4 is expressible as the sum
of two odd primes.

Twin Prime Problem Are there infinitely many pairs of primes of the form (p, p+2)
(hereafter called twin primes)?

The purpose of this note is to show how a given pair of twin primes can be used to

generate other twin primes using Goldbach’s conjecture.

Let’s first look at how Goldbach’s conjecture, assuming that it is correct, can be
used to show that there are infinitely many primes.

THEOREM 1. There is an infinite number of primes.

Proof. Let’s assume that there is only a finite number of primes and show that
this leads to a contradiction. Let z be an upper bound for the largest prime. By
Goldbach’s Conjecture there are odd primes p and ¢ such that p + g = 2z, but there
are only finitely many primes p and g which satisfy this equation. Since there are
infinitely many positive even integers 2z, we have a contradiction. 0

Let’s now show a method for generating twin primes using Goldbach’s Conjecture.
Example 1: Starting with the twin prime (59, 61), consider their sum, 59 + 61 = 120.
Now let’s use Goldbach’s conjecture to find all prime pairs whose sum is 120. They
are (7,113),(11,109), (13,107), (17,103),(19,101),(23,97), (31,89), (37, 83), (41,79),
(47,73), (53,67), and (59, 61) From the two components of these twelve ordered pairs
of primes, form the following increasing sequence of 24 primes:

7,11,13,17,19,23, 31,37, 41,47,53,59,61,67, 73,79, 83,89,97,101, 103,107, 109, 113

In this sequence of 24 primes we find five twin primes. They are underlined in the
sequence. Hence, using Goldbach’s Conjecture and the twin prime pair (59,61) we
were able to generate four other twin primes.

In the following problems, a table of primes (or twin primes) can be helpful to
obtain the solutions. The solutions will be used later in Table 1.

Problem 1: Using the twin prime (11,13), generate all possible twin primes.
Solution: (5,7) and (17, 19).

Problem 2: Using the twin prime (17,19), generate all possible twin primes.
Solution: (5,7) and (29, 31).

Problem 3: Using the twin prime (29,31), generate all possible twin primes.
Solution: (17,19) and (41,43).

Problem 4: Using the twin prime (41,43), generate all possible twin primes.
Solution: (11,13) and (71,73).

Problem 5: Using the twin prime (71,73), generate all possible twin primes.
Solution: (5,7) , (41,43), (101,103) and (137,139).

By our method, with each twin prime generator, we have found at least two more
twin primes. One of them is the “smallest” another is the “largest”. We now create a
table by using the “largest” as the generator in the next row. From (11,13) we obtain

Let’s stop here and consider two related questions:

*North Lake College




