ABSTRACT. We consider generalizations to monoidal categories of the tensor-hom relationship for modules over a commutative ring R, i.e., $- \otimes_R M$ is left adjoint to $\text{Hom}_R(M,-)$ as endofunctors of R-Mod. For an object V of a symmetric monoidal category $(\mathcal{V}, \otimes, I, \ldots)$, one can ask whether the endofunctor $- \otimes V$ has a right adjoint. If this is the case, for all V, then \mathcal{V} is called a symmetric monoidal closed category. There are many examples of symmetric monoidal closed categories. The existence of left adjoints to $- \otimes V$ is less common in many familiar monoidal categories. We say V is exact when such an adjoint exists. For example, in the case of R-Mod, one can show that M is exact if and only if M is finitely generated and projective. The exact commutative R-algebras are precisely those which are exact when considered as R-modules. Our interest in the latter goes back to the late 1970s when we were considering the dual problem for the category of affine schemes over $\text{Spec} R$.

In this talk, we present a generalization of the above characterization of exact R-algebras which applies to several other categories.