I. True or false? Please circle your answers.
(1.5 points for each correct answer, but **be careful**: 1 point will be subtracted for each wrong answer!)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

1) *Math 461: Topology* is by far the best class you have ever taken. TRUE | FALSE

2) If $f: X \rightarrow Y$ is a function and X is countable, then $f(X)$ is countable. TRUE FALSE

3) If $f: X \rightarrow Y$ is a function and Y is countable, then $f(X)$ is countable. TRUE FALSE

4) If $f: X \rightarrow Y$ is a function and Y is countable, then $f^{-1}(Y)$ is countable. TRUE FALSE

5) If X is a discrete topological space, then any subspace of X is discrete. TRUE FALSE

6) If X is a topological space which is not discrete (i.e., not all subsets are open), then no subspace of X is discrete. .. TRUE FALSE

7) If X is a disconnected topological space, then any subspace of X is disconnected. TRUE FALSE

8) If X is a path-connected topological space, then any subspace of X is path-connected. TRUE FALSE

9) If X is a compact topological space, then any **closed** subspace of X is compact. TRUE FALSE

10) If X is a Hausdorff topological space, then any subspace of X is Hausdorff. TRUE FALSE

11) If X is a second-countable topological space, then any subspace of X is second-countable. TRUE FALSE

12) If X is a second-countable topological space, then any **basis** for the topology of X is countable. TRUE FALSE
True or false? (Continued.)

13] If A and B are connected subspaces of a topological space X and $A \cap B \neq \emptyset$, then $A \cup B$ is connected. ... TRUE FALSE

14] If A and B are connected subspaces of a topological space X and $A \cap B \neq \emptyset$, then $A \cap B$ is connected. ... TRUE FALSE

15] If $f: X \to Y$ is a continuous function between topological spaces X and Y, then for every open subset U of X, $f(U)$ is open in Y. TRUE FALSE

16] If $f: X \to Y$ is a homeomorphism between topological spaces X and Y, then for every open subset U of X, $f(U)$ is open in Y. TRUE FALSE

17] If $f: X \to Y$ is a bijective function between topological spaces X and Y, and for every open subset U of X, $f(U)$ is open in Y, then f is a homeomorphism. TRUE FALSE

18] If X is a Hausdorff space, Y is a compact space, and $f: X \to Y$ is a continuous and bijective function, then f is a homeomorphism. TRUE FALSE

19] If X and Y are both compact metric spaces, and $f: X \to Y$ is a continuous and bijective function, then f is a homeomorphism. TRUE FALSE

20] \mathbb{R} and \mathbb{R}^2 with the standard topologies are homeomorphic. TRUE FALSE

21] \mathbb{Z} and \mathbb{Z}^2 with the discrete topologies are homeomorphic. TRUE FALSE

22] If $f: X \to Y$ is a continuous function between topological spaces X and Y, and X is connected and compact, then $f(X)$ is connected and compact. TRUE FALSE

23] If $f: X \to Y$ is a continuous function between topological spaces X and Y, and X is separable, then $f(X)$ is separable. TRUE FALSE

24] If $f: X \to Y$ is a continuous function between topological spaces X and Y, and X is Hausdorff, then $f(X)$ is Hausdorff. TRUE FALSE

25] If $X = \mathbb{R}$ is given the cofinite (also known as finite complement) topology, then the function $f: X \to X$, $f(x) = \sin(x)$, is continuous. TRUE FALSE

26] If $X = \mathbb{R}$ is given the cofinite (also known as finite complement) topology, then the function $f: X \to X$, $f(x) = x^2$, is continuous. TRUE FALSE

39 TOTAL POINTS
II. Fill in the blanks in the following theorem.

Theorem. Let X and Y be topological spaces, and let $f : X \to Y$ be a function. Then the following conditions are equivalent:

(i) f is continuous, i.e., for every open subset U of Y, $f^{-1}(U)$ is ... open in X;

(ii) for every closed subset C of Y, $f^{-1}(C)$ is ... closed in X;

(iii) for every subset A of X, one has ... $f(\bar{A}) \subset \overline{f(A)}$;

(iv) for every subset B of Y, one has ... $f^{-1}(\bar{B}) \supset \overline{f^{-1}(B)}$;

(v) for every point $x \in X$ and every neighborhood V of $f(x)$ in Y, there is

........ a neighborhood U of x in X such that $U \subset f^{-1}(V)$ (or equivalently $f(U) \subset V$).

...

Prove exactly two implications of your choice from this theorem.

See the proof of theorem 18.1 in Munkres’ book, pages 104–105.
III. Consider the following two subspaces of \mathbb{R}^2 with the standard topology.

![Diagram showing two subspaces X and Y]

Are X and Y homeomorphic? Justify your answer carefully.

The spaces X and Y are not homeomorphic.

Let p be the point of Y drawn in the picture above. Then $Y - \{p\}$ is disconnected, whereas for any point $q \in X$, $X - \{q\}$ is (path-)connected. So if there existed a homeomorphism $f : Y \to X$ then f would induce a homeomorphism between $Y - \{p\}$ and $X - \{f(p)\}$, which is impossible since $X - \{f(p)\}$ is connected but $Y - \{p\}$ is not.
IV. Complete the following definition.

Definition. If X is a topological space and A is a subset of X, then the *closure* of A in X is

$$\overline{A} = \left\{ x \in X \mid \text{.................. \forall U neighborhood of } x, A \cap U \neq \emptyset \text{} \right\}.$$

- If $X = \mathbb{R}^2$ with the **standard** topology and $A = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1 \text{ and } x \neq 0 \right\}$, then what is \overline{A}?

$$\overline{A} = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1 \right\}.$$

- Now let X be a set and let A be a non-empty subset of X.

The possible answers for the three following questions are as follows:

1. $\overline{A} = A$.
2. $\overline{A} = X$.
3. $\overline{A} = \begin{cases} A & \text{if } A \text{ is finite,} \\ X & \text{if } A \text{ is infinite.} \end{cases}$

Write the number corresponding to the correct answer in each of the boxes below.

- If X has the **indiscrete** topology and $\emptyset \neq A \subset X$, then .. 2

- If X has the **discrete** topology and $\emptyset \neq A \subset X$, then .. 1

- If X has the **cofinite** (also known as finite complement) topology and $\emptyset \neq A \subset X$, then .. 3

11 TOTAL POINTS
V. Complete the following two definitions, and then write the precise statement (without proof!) of either the intermediate value theorem or the extreme value theorem.

Definition. A topological space X is *disconnected* if and only if \(\exists U, V \subset X \) such that \(U \) and \(V \) are non-empty and open in \(X \), \(U \cup V = X \), and \(U \cap V = \emptyset \).

Definition. A topological space X is *compact* if and only if every open cover of \(X \) has a finite subcover, i.e., \(\forall \mathcal{U} \subset \mathcal{P}(X) \), if \(\forall U \in \mathcal{U} \), \(U \) is open in \(X \) and \(\bigcup_{U \in \mathcal{U}} U = X \), then \(\exists n \in \mathbb{N} \) and \(\exists U_1, U_2, \ldots, U_n \in \mathcal{U} \) such that \(U_1 \cup U_2 \cup \cdots \cup U_n = X \).

Intermediate Value Theorem. Let \(X \) be a topological space, and let \(f: X \to \mathbb{R} \) be a function.

Assume that \(X \) is *connected*, and that \(f \) is *continuous*.

Then \(\forall a, b \in X \) and \(\forall y \in \mathbb{R} \), if \(f(a) \leq y \leq f(b) \) then \(\exists x \in X \) such that \(f(x) = y \).

Extreme Value Theorem. Let \(X \) be a topological space, and let \(f: X \to \mathbb{R} \) be a function.

Assume that \(X \) is *compact and not empty*, and that \(f \) is *continuous*.

Then \(\exists m, M \in X \) such that \(\forall x \in X \), \(f(m) \leq f(x) \leq f(M) \).
VI. Solve only one of the following two problems.

A] Recall that S^0 denotes the topological space with only two points \{+1, −1\} and the discrete topology. Prove that a topological space X is disconnected if and only if there exists a continuous and surjective function $f: X \to S^0$.

Assume that X is disconnected. Then $\exists U, V \subset X$ such that U and V are non-empty and open in X, $U \cup V = X$, and $U \cap V = \emptyset$. Define $f: X \to S^0$, $f(x) = \begin{cases} -1 & \text{if } x \in U, \\ +1 & \text{if } x \in V. \end{cases}$

Since $U \cup V = X$ and $U \cap V = \emptyset$, f is well-defined. Since U and V are not empty, f is surjective. And since U and V are open, f is continuous.

Conversely, assume that $\exists f: X \to S^0$ continuous and surjective. Define $U = f^{-1}(\{-1\})$ and $V = f^{-1}(\{+1\})$. Since f is continuous, U and V are open in X. Since f is surjective, U and V are not empty. And finally we have

$U \cup V = f^{-1}(\{-1\}) \cup f^{-1}(\{+1\}) = f^{-1}(\{-1\} \cup \{+1\}) = f^{-1}(S^0) = X$, and

$U \cap V = f^{-1}(\{-1\}) \cap f^{-1}(\{+1\}) = f^{-1}(\{-1\} \cap \{+1\}) = f^{-1}(\emptyset) = \emptyset$.

B] Recall the following result that we proved in class.

Lemma. If C is a compact subset of a Hausdorff space X and $x \in X - C$, then there exist open subsets U and V of X such that $C \subset U$, $x \in V$, and $U \cap V = \emptyset$.

Now let X be a Hausdorff space, and let C and D be compact subsets of X such that $C \cap D = \emptyset$. Prove that there exist open subsets U and V of X such that $C \subset U$, $D \subset V$, and $U \cap V = \emptyset$.

The lemma implies that $\forall x \in D$, $\exists U_x, V_x$ open in X such that $C \subset U_x$, $x \in V_x$, and $U_x \cap V_x = \emptyset$. Then $\{V_x\}_{x \in D}$ is an open cover of D, and therefore, since D is compact, $\exists n \in \mathbb{N}, \exists x_1, \ldots, x_n \in D$ such that $V_{x_1} \cup \cdots \cup V_{x_n} \supset D$. Define $V = V_{x_1} \cup \cdots \cup V_{x_n}$ and $U = U_{x_1} \cap \cdots \cap U_{x_n}$. Then $D \subset V$ and V is open in X since it is a union of open sets; $C \subset U$ since $\forall 1 \leq i \leq n$, $C \subset U_{x_i}$, and U is open in X since it is a finite intersection of open sets; and finally $U \cap V = \emptyset$ because if $y \in V$ then $\exists 1 \leq i \leq n$ such that $y \in V_{x_i}$, hence $y \notin U_{x_i}$ since $U_{x_i} \cap V_{x_i} = \emptyset$, and so $y \notin U$.

Have a great winter break!