Let \(\mathbb{Z} \) denote the set of all integers, and let \(\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots \} \) denote the set of all prime numbers. In this homework assignment you will be guided through a topological proof of the well-known fact that there are infinitely many primes, i.e., that \(\mathbb{P} \) is an infinite set.

Definition. For any \(c, d \in \mathbb{Z} \) with \(d > 0 \), let \(AP_{c,d} = \{ c + nd \mid n \in \mathbb{Z} \} \) be the infinite arithmetic progression with initial term \(c \) and common difference \(d \). Define \(\mathcal{B} = \{ AP_{c,d} \mid c, d \in \mathbb{Z}, \ d > 0 \} \).

Prove the following three lemmas.

Lemma 1. *The set \(\mathcal{B} \) is a basis for a topology on \(\mathbb{Z} \).*

Let’s consider \(\mathbb{Z} \) together with the topology generated by \(\mathcal{B} \).

Lemma 2. *Every non-empty open set of \(\mathbb{Z} \) is infinite.*

Lemma 3. *For any \(c, d \in \mathbb{Z} \) with \(d > 0 \), the set \(AP_{c,d} \) is closed.*

Now consider \(X = \mathbb{Z} - \left(\bigcup_{p \in \mathbb{P}} AP_{0,p} \right) \). What exactly is the set \(X \)? Is \(X \) open?

From all this, deduce the following statement.

Theorem 4. *There are infinitely many primes.*