First problem.
For each of the following six questions, four possible answers are provided, but only one of them is correct: write the corresponding letter in the box!

1. Let \(f: X \to Y \) be a function. Let \(x \) and \(x' \) be elements of \(X \) such that \(f(x) = f(x') \).
 What do we need to know about \(f \) to conclude that \(x = x' \)?
 A] Nothing: this is true for all functions \(f \).
 B] We need \(f \) to be injective.
 C] We need \(f \) to be surjective.
 D] We need \(f \) to be bijective.

2. Let \(f: X \to Y \) be a function. Let \(x \) and \(x' \) be elements of \(X \) such that \(x = x' \).
 What do we need to know about \(f \) to conclude that \(f(x) = f(x') \)?
 A] Nothing: this is true for all functions \(f \).
 B] We need \(f \) to be injective.
 C] We need \(f \) to be surjective.
 D] We need \(f \) to be bijective.

3. Let \(f: X \to Y \) be a function. Let \(y \) be an element of \(Y \).
 What do we need to know about \(f \) to conclude that \(y = f(x) \) for some \(x \in X \)?
 A] Nothing: this is true for all functions \(f \).
 B] We need \(f \) to be injective.
 C] We need \(f \) to be surjective.
 D] We need \(f \) to be bijective.

4. Let \(f: X \to Y \) be a function. Let \(y \) be an element of \(Y \).
 What do we need to know about \(f \) to conclude that \(y = f(x) \) for exactly one \(x \in X \)?
 A] Nothing: this is true for all functions \(f \).
 B] We need \(f \) to be injective.
 C] We need \(f \) to be surjective.
 D] We need \(f \) to be bijective.

5. Let \(f: X \to Y \) be a function. Let \(y \) be an element of \(Y \).
 What do we need to know about \(f \) to conclude that \(y = f(x) \) for at most one \(x \in X \)?
 A] Nothing: this is true for all functions \(f \).
 B] We need \(f \) to be injective.
 C] We need \(f \) to be surjective.
 D] We need \(f \) to be bijective.

6. Let \(f: X \to Y \) be a function. Let \(x \) be an element of \(X \).
 What do we need to know about \(f \) to conclude that \(f(x) = y \) for exactly one \(y \in Y \)?
 A] Nothing: this is true for all functions \(f \).
 B] We need \(f \) to be injective.
 C] We need \(f \) to be surjective.
 D] We need \(f \) to be bijective.
Second problem.
Let X and Y be sets, and $\varphi : X \to Y$ a function. Suppose that W is a subset of X and Z is a subset of Y. Write the definitions of $\varphi(W)$ and of $\varphi^{-1}(Z)$.

Third problem.
Let A and B be sets, and let $f : A \to B$ be a function. Suppose that A' and A'' are subsets of A, and that B' is a subset of B. Are the following implications true or false? Prove or disprove them.

1. $B' \subset f(A' \cap A'') \implies B' \subset f(A')$ and $B' \subset f(A'')$
 TRUE | FALSE

2. $B' \subset f(A')$ and $B' \subset f(A'') \implies B' \subset f(A' \cap A'')$
 TRUE | FALSE