I. Let X, Y, and Z be statements.
Are the following statements equivalent to “If X is true, then Y is true or Z is true”?
Please circle your answers.

1] If X is true and Y is false, then Z is true. YES | NO

2] If X is true and Z is false, then Y is true. YES | NO

3] If Y is false and Z is false, then X is false. YES | NO

4] If Y is false or Z is false, then X is false. YES | NO

5] If Y is true or Z is true, then X is true. YES | NO

6] If X is true, then Y is true and Z is true. YES | NO

7] If X is false, then Y is false and Z is false. YES | NO

8] If X is false, then Y is false or Z is false. YES | NO

9] X is false or Y is true or Z is true. YES | NO

10] X is true and Y is true and Z is true. YES | NO

11] X is true and Y is true, or X is true and Z is true. YES | NO
II. For each of the following five questions, four possible answers are provided, but only one of them is correct: write the corresponding letter in the box!

II/1. Let $f: X \rightarrow Y$ be a function. Let x and x' be elements of X such that $f(x) = f(x')$.

What do we need to know about f to conclude that $x = x'$?

A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

II/2. Let $f: X \rightarrow Y$ be a function. Let x and x' be elements of X such that $x = x'$.

What do we need to know about f to conclude that $f(x) = f(x')$?

A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

II/3. Let $f: X \rightarrow Y$ be a function. Let y be an element of Y.

What do we need to know about f to conclude that $y = f(x)$ for some $x \in X$?

A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

II/4. Let $f: X \rightarrow Y$ be a function. Let y be an element of Y.

What do we need to know about f to conclude that $y = f(x)$ for exactly one $x \in X$?

A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

II/5. Let $f: X \rightarrow Y$ be a function. Let y be an element of Y.

What do we need to know about f to conclude that $y = f(x)$ for at most one $x \in X$?

A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.
III. Let \(a \) and \(b \) be integers, i.e., \(a, b \in \mathbb{Z} \).

III/1. What exactly does it mean to say that “\(a \) is divisible by \(b \)”, or equivalently that “\(b \) divides \(a \)”?

III/2. Is it true or false that for every natural number \(n \in \mathbb{N} \), \(6^n \) is not divisible by 5? ……
Prove your claim.
IV. Let \((x_n)_{n \in \mathbb{N}}\) be a sequence of real numbers.

IV/1. What exactly does it mean to say that \((x_n)_{n \in \mathbb{N}}\) is convergent?

IV/2. Prove the following statement: If \((x_n)_{n \in \mathbb{N}}\) is convergent, then for every \(\varepsilon \in \mathbb{R}_{>0}\) there exists an \(N \in \mathbb{N}\) such that for all \(m, n \in \mathbb{N}\), if \(m \geq N\) and \(n \geq N\) then \(|x_m - x_n| < \varepsilon\).
IV/3. What is the contrapositive of the statement in IV/2?

IV/4. Use IV/3 to show that the sequence \(x_n = (-1)^n \) is divergent.
V. For each natural number $n \in \mathbb{N}$, define $x_n = \sum_{j=1}^{n} \frac{1}{j^2}$.

V/1. Prove that for all $n \in \mathbb{N}$, $x_n \leq 2 - \frac{1}{n}$.

V/2. Does the sequence $(x_n)_{n \in \mathbb{N}}$ defined above converge in \mathbb{R}? Prove your claim.
VI. VI/1. Define a relation \sim on the set of real numbers \mathbb{R} as follows: for all $x, y \in \mathbb{R}$, declare $x \sim y$ if and only if $x - y \in \mathbb{Z}$. Is \sim an equivalence relation? Prove your claim.

VI/2. More generally, let A be a subset of \mathbb{R} and define a relation \sim on \mathbb{R} by declaring $x \sim y$ if and only if $x - y \in A$. What conditions must A satisfy in order for \sim to be an equivalence relation?
VII. Suppose that you have a set A and a subset $B \subseteq A$ such that $B \neq A$.

VII/1. What exactly do these conditions mean?

$B \subseteq A$

$B \neq A$

VII/2. Given A and B satisfying the above conditions, is it possible for A and B to have the same cardinality, i.e., $A \simeq B$?

A] No, it is not possible for any A.
B] Yes, it is possible for any A.
C] Yes, but only if A is empty.
D] Yes, but only if A is not empty.
E] Yes, but only if A is finite.
F] Yes, but only if A is infinite.
G] Yes, but only if A is countable.
H] Yes, but only if A is uncountable.

VII/3. Prove that your answer to VII/2 is correct.