For each of the following five questions, four possible answers are provided, but only one of them is correct: write the corresponding letter in the box! (Recall: injective = one-to-one; surjective = onto.)

1] Let \(f : S \to T \) be a function. Let \(s_1 \) and \(s_2 \) be elements of \(S \) such that \(s_1 = s_2 \).
What do we need to know about \(f \) to conclude that \(f(s_1) = f(s_2) \)?
A] Nothing: this is true for all functions \(f \).
B] We need \(f \) to be injective.
C] We need \(f \) to be surjective.
D] We need \(f \) to be bijective.

2] Let \(f : S \to T \) be a function. Let \(s_1 \) and \(s_2 \) be elements of \(S \) such that \(f(s_1) = f(s_2) \).
What do we need to know about \(f \) to conclude that \(s_1 = s_2 \)?
A] Nothing: this is true for all functions \(f \).
B] We need \(f \) to be injective.
C] We need \(f \) to be surjective.
D] We need \(f \) to be bijective.

3] Let \(f : S \to T \) be a function. Let \(t \) be an element of \(T \).
What do we need to know about \(f \) to conclude that \(t = f(s) \) for some \(s \in S \)?
A] Nothing: this is true for all functions \(f \).
B] We need \(f \) to be injective.
C] We need \(f \) to be surjective.
D] We need \(f \) to be bijective.

4] Let \(f : S \to T \) be a function. Let \(t \) be an element of \(T \).
What do we need to know about \(f \) to conclude that \(t = f(s) \) for one unique \(s \in S \)?
A] Nothing: this is true for all functions \(f \).
B] We need \(f \) to be injective.
C] We need \(f \) to be surjective.
D] We need \(f \) to be bijective.

5] Let \(f : S \to T \) be a function. Let \(s \) be an element of \(S \).
What do we need to know about \(f \) to conclude that \(f(s) = t \) for one unique \(t \in T \)?
A] Nothing: this is true for all functions \(f \).
B] We need \(f \) to be injective.
C] We need \(f \) to be surjective.
D] We need \(f \) to be bijective.