
Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #83

(8) DATES
SAS has numerous informats for reading dates and formats for displaying dates. Dates can be read with
either numeric, character, or date informats. If you read a date as a character variable, you will not be
able to use it in any calculations, e.g. to calculate the number of days that separate two given dates. If
you read a date with a numeric format, SAS will store the date as a number, but not as a numeric value
that can be used to calculate time differences. However, if you use one of the SAS date informats, the
date is stored as a numeric variable that can be used in calculations.

No matter how a date might appear in a raw data file, there probably is a SAS informat that will allow it to
be read and stored as a numeric variable. The following shows a series of SAS informats that can be
used to read a specified date (March 15, 1994) stored in a number of different forms...

RAW DATA INFORMAT
-------- --------
031594 mmddyy6.
940315 yymmdd6.
03/15/94 mmddyy8.
94/03/15 yymmdd8.
03 15 94 mmddyy8.
94 03 15 yymmdd8.
03151994 mmddyy8.
15mar94 date7.
03/15/1994 mmddyy10.
15mar1994 date9.

Once a date is read with a date informat, SAS stores the date as a number, i.e. the number of days
between the date and January 1, 1960 (3/15/1994 is stored as 12492). This permits the use of dates in
calculations. For example, imagine you were given a data file that contained a date admission to a
hospital and a date of discharge. You might be interested in computing the length stay.

...Example 8.1...
data patients;
informat admit disch mmddyy8.; 1
format admit disch date9.; 2
input admit disch; 3
los = disch - admit; 4
label
los = 'LENGTH OF STAY'
admit = 'ADMIT DATE'
disch = 'DISCHARGE DATE'
;
datalines;
03/21/90 04/01/90
05/15/90 05/16/90
;
run;

 ADMIT DISCHARGE LENGTH
Obs DATE DATE OF STAY
 1 21MAR1990 01APR1990 11 5
 2 15MAY1990 16MAY1990 1

1 An INFORMAT statement tells SAS to read the variables ADMIT and DISCH with a DATE informat.
2 A FORMAT statement tells SAS to display the two variables as dates, not simply as numeric data.
3 LIST input is used to read the two dates.
4 A new variable is created, LOS, that is the difference in days between DISCH and ADMIT.
5 The output from PROC PRINT shows that the variables DISCH and ADMIT were treated as dates

and that a difference in days was calculated correctly.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #84

In addition to using an INFORMAT to tell SAS to treat the variables ADMIT and DISCH as dates, a
FORMAT is used to control how the dates will be displayed. Without a format, the dates would be
displayed as numbers...

proc print data=patients label;
* temporarily remove formats from variables;
format _all_;
run;

 ADMIT DISCHARGE LENGTH
Obs DATE DATE OF STAY
 1 11037 11048 11
 2 11092 11093 1

The numbers shown under ADMIT and DISCHARGE are the number of days each date is from 1/1/1960.
The calculation of LOS is still correct.

Just as SAS has a many INFORMATS for reading dates, it also has a wide selection of FORMATS for
displaying dates, e.g. March 15, 1994 can be displayed as follows...

FORMAT DISPLAY
------ -------
mmddyy. 03/15/94
mmddyy6. 031594
mmddyy8. 03/15/94
yymmdd. 94-03-15
yymmdd6. 940315
yymmdd8. 94-03-15
date7. 15MAR94
date9. 15MAR1994
weekdate. TUESDAY, MARCH 15, 1994
weekdatx. TUESDAY, 15 MARCH 1994
worddate. MARCH 15, 1994

The last three formats will display the leading blanks that are shown, e.g. using WORDDATE. results in
five leading blanks. Example 8.1 used the DATE9. format to control the display of the variables DISCH
and ADMIT.

In addition to the informats and formats that SAS supplies for reading and writing dates, there are also a
number of SAS functions that can be used to work with dates.

...Example 8.2....
proc format; 1
value dayofwk
1 = "SUNDAY" 2 = "MONDAY" 3 = "TUESDAY"
4 = "WEDNESDAY" 5 = "THURSDAY" 6 = "FRIDAY" 7 = "SATURDAY";
run;

data function;
format dob future now mmddyy10. dob_dow dayofwk.; 2

dob = '15jul75'd; 3
dob_dow = weekday(dob); 4
future = mdy(12,31,2010); 5
now = today(); 6
agethen = (future - dob) / 365.25; 7
agenow = (now - dob) / 365.25;
age_then = yrdif(dob,future,'actual'); 8
age_now = yrdif(dob,now,'actual');

label
dob = "BIRTHDATE"
dob_dow = "DAY OF WEEK/BIRTH DATE"
future = "DAY IN/THE FUTURE"

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #85

now = "TODAY"
agethen = "AGE IN THE FUTURE (OLD WAY)"
agenow = "AGE NOW (OLD WAY)"
age_then = "AGE IN THE FUTURE (YRDIF)"
age_now = "AGE NOW (YRDIF)"
;
run;

proc print data=function label;
run;
 AGE IN THE AGE NOW AGE IN THE
 DAY IN THE DAY OF WEEK FUTURE (OLD FUTURE AGE NOW
 BIRTHDATE FUTURE TODAY (BIRTH DATE) (OLD WAY) WAY) (YRDIF) (YRDIF)

07/15/1975 12/31/2010 04/02/2001 TUESDAY 35.4634 25.7166 35.4630 25.7151

1 PROC format is used to create a format that will allow the printing of a literal day of the week given a
number in the range 1 to 7.

2 FORMATS are assigned to several variables that are dates.
3 A date variable can be created if the date is expressed as shown (day/month/year, with a 3-character

literal month) and the date is in quotes followed by the letter d.
4 The day of the week of any given day can be determined via the WEEKDAY function - the function

returns a number in the range of 1 to 7 (Sunday-to-Saturday). The number is a numeric variable.
5 A date variable can also be created via the MDY function if the month, day, and year are supplied.
6 The current date can be assigned to a variable using the TODAY() function.
7 New variables (AGETHEN, AGENOW) are created. These are ages in years
8 A SAS function, YRDIF, is used to create new variables similar to those created in step #7. The

YRDIF function requires three arguments: the starting date of an interval; the ending date of an
interval; the method to be used to calculate the interval. To get a true difference in years, use the
word ACTUAL in quotes as shown in the example.

The output from PROC PRINT shows all the variables in the data set. The variables created with the
YRDIF function are not too different from the old method of calculating the age in years.

You can use the capability of expressing a date referred to in step #3 in example 8.2 to group
observations by date ranges with a user-written format. The next example demonstrates this capability,
together with some SAS-supplied formats that can be used to group observations.

...Example 8.3...
proc format; 1
value interval
'01jan1997'd - '30jun1997'd = '1ST HALF 1997'
'01jul1997'd - '31dec1997'd = '2ND HALF 1997'
'01jan1998'd - '30jun1998'd = '1ST HALF 1998'
'01jul1998'd - '31dec1998'd = '2ND HALF 1998'
;
run;

data admits;
input admit1 : mmddyy10. @@; 2
admit2 = admit1; admit3 = admit1; admit4 = admit1;
admit5 = admit1; admit6 = admit1; admit7 = admit1;
label
admit1 = 'USER-WRITTEN FORMAT'
admit2 = 'YEAR FORMAT'
admit3 = 'MONTH FORMAT'
admit4 = 'MONYY7 FORMAT'
admit5 = 'QTR (QUARTER) FORMAT'
admit6 = 'MONNAME (MONTH NAME) FORMAT'
admit7 = 'DOWNAME (DAY OF WEEK NAME) FORMAT'
;

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #86

datalines;
01181998 02111998 02281998 02161998 02271998 03291998 04181998 05081998
05071998 05101998 06031998 08021998 08131998 07241998 08151998 10011998
01081997 01251997 02041997 02171997 03071997 02181997
03161997 03281997 03301997 03271997 04031997 04271997
05311997 06071997 06131997 05311997 06181997 06161997
06201997 07141997 08071997 07131997 08071997 09051997
;
run;

proc freq data=admits; 3
table admit1-admit7;
format
admit1 interval.
admit2 year.
admit3 month.
admit4 monyy7.
admit5 qtr.
admit6 monname.
admit7 downame.
;
run;

 USER-WRITTEN FORMAT
 Cumulative Cumulative
 admit1 Frequency Percent Frequency Percent
--
1ST HALF 1997 19 47.50 19 47.50
2ND HALF 1997 5 12.50 24 60.00
1ST HALF 1998 11 27.50 35 87.50
2ND HALF 1998 5 12.50 40 100.00

 YEAR FORMAT
 Cumulative Cumulative
admit2 Frequency Percent Frequency Percent

 1997 24 60.00 24 60.00
 1998 16 40.00 40 100.00

 MONTH FORMAT
 Cumulative Cumulative
admit3 Frequency Percent Frequency Percent

 1 3 7.50 3 7.50
 2 7 17.50 10 25.00
 3 6 15.00 16 40.00
 4 3 7.50 19 47.50
 5 5 12.50 24 60.00
 6 6 15.00 30 75.00
 7 3 7.50 33 82.50
 8 5 12.50 38 95.00
 9 1 2.50 39 97.50
 10 1 2.50 40 100.00

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #87

 MONYY7 FORMAT
 Cumulative Cumulative
 admit4 Frequency Percent Frequency Percent
--
JAN1997 2 5.00 2 5.00
FEB1997 3 7.50 5 12.50
MAR1997 5 12.50 10 25.00
APR1997 2 5.00 12 30.00
MAY1997 2 5.00 14 35.00
JUN1997 5 12.50 19 47.50
JUL1997 2 5.00 21 52.50
AUG1997 2 5.00 23 57.50
SEP1997 1 2.50 24 60.00
JAN1998 1 2.50 25 62.50
FEB1998 4 10.00 29 72.50
MAR1998 1 2.50 30 75.00
APR1998 1 2.50 31 77.50
MAY1998 3 7.50 34 85.00
JUN1998 1 2.50 35 87.50
JUL1998 1 2.50 36 90.00
AUG1998 3 7.50 39 97.50
OCT1998 1 2.50 40 100.00

 QTR (QUARTER) FORMAT
 Cumulative Cumulative
admit5 Frequency Percent Frequency Percent

 1 16 40.00 16 40.00
 2 14 35.00 30 75.00
 3 9 22.50 39 97.50
 4 1 2.50 40 100.00

 MONNAME (MONTH NAME) FORMAT
 Cumulative Cumulative
 admit6 Frequency Percent Frequency Percent
--
 January 3 7.50 3 7.50
 February 7 17.50 10 25.00
 March 6 15.00 16 40.00
 April 3 7.50 19 47.50
 May 5 12.50 24 60.00
 June 6 15.00 30 75.00
 July 3 7.50 33 82.50
 August 5 12.50 38 95.00
September 1 2.50 39 97.50
 October 1 2.50 40 100.00

 DOWNAME (DAY OF WEEK NAME) FORMAT
 Cumulative Cumulative
 admit7 Frequency Percent Frequency Percent
--
Wednesday 4 10.00 4 10.00
 Saturday 7 17.50 11 27.50
 Tuesday 2 5.00 13 32.50
 Monday 4 10.00 17 42.50
 Friday 8 20.00 25 62.50
 Sunday 8 20.00 33 82.50
 Thursday 7 17.50 40 100.00

1 A format is created that groups dates into four intervals
2 The data set ADMITS is created with seven variables, admit1-admit7, all having the same value.
3 Various formats are used to group observations based on the value of a variable that contains a date.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #88

Two functions can be used to work with date intervals, INTCK and INTNX. The INTCK function computes
the number of intervals between any two given dates, with the interval being either day, week, month, qtr,
or year. The INTNX allows you to specify the time interval (same choices as with INTCK), a starting date,
and the number of intervals you would like to cross. SAS then returns a date. These functions are not
discussed here in any detail.

...YEARCUTOFF
When a year is expressed with only two digits, how does SAS know what century to use when it creates
a numeric date value? There is a SAS system option called YEARCUTOFF and its value determines
how two digit dates are evaluated. The default value of this option in version 8 is 1920. Any two digit
date is assumed to occur AFTER 1920. If that value is changed via an OPTIONS statement, SAS will
use the new value.

...Example 8.4...
options yearcutoff=1900; 1
data test;
format dt weekdate.;
dt = mdy(01,12,10); 2
label dt = 'YEARCUTOFF 1900';
run;

proc print data=test label noobs;
run;

options yearcutoff=1920; 3
data test;
format dt weekdate.;
dt = mdy(01,12,10);
label dt = 'YEARCUTOFF 1920';
run;

proc print data=test label noobs;
run;

 YEARCUTOFF 1900
 Wednesday, January 12, 1910

 YEARCUTOFF 1920
 Tuesday, January 12, 2010

1 The YEARCUTOFF option for two-digit dates is set to 1900. Any two-digit date is considered as
occurring on or after 1900.

2 The MDY function is used to create a date variable.
3 The YEARCUTOFF option is changed to 1920. Any two-digit date is considered as occurring on or

after 1920.

You can see the difference in how SAS treats the variable DT depending on the value of YEARCUTOFF.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #89

...LONGITUDINAL DATA
There is a feature of a sorted data set that allows you to find the first and/or last observation in a
sequence using a data step. You already know that you read a SAS data set with a SET statement. You
also know about BY-GROUP processing from working with grouped data. A combination of a SET
statement and a BY statement within a data step gives you access to two SAS-created variables.

...Example 8.5...
data manyids;
input id : $2. visit : mmddyy.; 1
format visit mmddyy8.;
datalines;
01 01/05/89
01 05/18/90
01 11/11/90
01 02/18/91
02 12/25/91
03 01/01/90
03 02/02/91
04 05/15/91
04 08/20/91
04 03/23/92
04 07/05/92
;
run;

proc sort data=manyids; 2
by id visit;
run;

data oneid;
set manyids; 3
by id;
if first.id then output; 4
run;

proc print data=oneid;
run;

OBS ID VISIT 5
 1 01 01/05/89
 2 02 12/25/91
 3 03 01/01/90
 4 04 05/15/91

1 A data set is created containing two variables, ID and VISIT (a date variable).
2 The data set is sorted by ID and by VISIT (date) within each ID.
3 A new data set is created. The date are read with a SET/BY combination. Using BY ID; creates a

new TEMPORARY variable name FIRST.ID that can be used within the data step.
4 The new data set contains only the observation with the first VISIT within each ID.

A new, SAS-created, temporary variable in example 8.5 is FIRST.ID. When you use a SET statement in
combination with a BY statement, SAS will create a new variable for each by-variable. There is only one
by-variable (ID), so SAS created FIRST.ID. That is not the entire story of SET/BY since SAS also creates
a LAST.ID (a two-for-one deal), i.e. for every variable in the BY statement, SAS will create a FIRST.<by-
variable> and a LAST.<by-variable>. The variables only exist for the duration of the data step and do not
become part of any SAS dataset.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #90

FIRST. and LAST. variables take on only two values, 1 or zero. The following are the values of FIRST.ID
and LAST.ID when the sorted version of the dataset MANYIDS is used in the data step shown in example
8.5...

 FIRST.ID LAST.ID
01 01/05/89 1 0
01 05/18/90 0 0
01 11/11/90 0 0
01 02/18/91 0 1
02 12/25/91 1 1
03 01/01/90 1 0
03 02/02/91 0 1
04 05/15/91 1 0
04 08/20/91 0 0
04 03/23/92 0 0
04 07/05/92 0 1

You can see that the first observation in a given sequence results in a FIRST. value of 1, while the last
observation results in a LAST. value of 1. If an observation is both the first and last observation in a
sequence (i.e. the only one as with ID 02), both the FIRST. and LAST. values are 1. If an observation is
not the first or the last in a sequence, both the FIRST. and LAST. values are 0. When you use a
statement such as that in example 8.5...

if first.id then output;

you are asking SAS to evaluate whether he value of the FIRST. variable is 1 or zero. If it is 1, then SAS
performs the task. You could write the above statement in a number of different ways. All would result in
the same data set being created....

if first.id eq 1 then output;

if first.id;

if not first.id then delete;
How could you change example 8.5 to create a data set with the last VISIT rather than the first?

...Example 8.6...
proc sort data=manyids;
by id descending visit;
run;

data oneid;
set manyids;
by id;
if first.id then output;
run;

proc print data=oneid;
run;

OBS ID VISIT
 1 01 02/18/91
 2 02 12/25/91
 3 03 02/02/91
 4 04 07/05/92

Since the data are sorted in descending date order within each ID, the first observation within each ID
group is the last VISIT. You could also modify the data step instead of the sort.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #91

...Example 8.7...
proc sort data=manyids;
by id visit;
run;

data oneid;
set manyids;
by id;
if last.id then output;
run;

proc print data=oneid;
run;

OBS ID VISIT
 1 01 02/18/91
 2 02 12/25/91
 3 03 02/02/91
 4 04 07/05/92

What if your task was to determine how long any individual in the dataset MANYIDS had been part of
your study, i.e. what is the difference in days between the first and last visits? This can be done in a
number different ways. One involves match-merging data sets (that's for later in the semester). The
following only requires one sort, one data step, plus the use of RETAIN and DO-END statements.

...Example 8.8...
proc sort data=manyids;
by id visit;
run;

data duration;
retain firstvis;;
set manyids;
by id;
if first.id then firstvis=visit;
if last.id then do;
 diffdays = visit - firstvis;
 output;
end;
run;

proc print data=duration;
var id firstvis visit diffdays;
format firstvis visit mmddyy6.;
run;

OBS ID FIRSTVIS VISIT DIFFDAYS
 1 01 01/05/89 02/18/91 774
 2 02 12/25/91 12/25/91 0
 3 03 01/01/90 02/02/91 397
 4 04 05/15/91 07/05/92 417

The IF FIRST.ID THEN... statement tells SAS to store the value of the variable VISIT as variable
FIRSTVIS when the first observation within a given ID is encountered. The RETAIN statement tells SAS
to hold onto the value assigned to FIRSTVIS rather than set it back to missing each time SAS cycles
back to the top of the data step. Remember, the default behavior of SAS within a data step is to set the
value of MOST (not all) variables to missing each time SAS reaches the top of the data step. The
RETAIN statement can selectively alter that behavior. The DO-END statement allows you to perform
multiple actions. Since the DO-END statement is embedded in an IF-THEN statement, SAS will perform
multiple actions if the IF-THEN statement is TRUE. When the observation within an ID group is found,
the date of the first visit is subtracted from the date of last visit and an observation is writtem to the data
set by using an OUTPUT statement.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #92

What if in addition to the VISIT data, you also had another variable that measured some characteristic of
an individual at each visit, e.g. cholesterol, that you hoped was changing over time as the result of some
study intervention. How could you modify the data step in example 8.8 to determine both the difference
in days and cholesterol values between first and last visits?

...Example 8.9...
data manyids;
input id : $2. visit : mmddyy8. chol;
format visit mmddyy8.;
datalines;
01 01/05/89 400
01 05/18/90 350
01 11/11/90 305
01 02/18/91 260
02 12/25/91 200
03 01/01/90 387
03 02/02/91 380
04 05/15/91 380
04 08/20/91 370
04 03/23/92 355
04 07/05/92 261
;
run;

proc sort data=manyids;
by id visit;
run;

data twodiffs;
retain firstvis firstcho;
format firstvis mmddyy8.;
set manyids;
by id;
if first.id then do;
 firstvis=visit;
 firstcho=chol;
end;
if last.id then do;
 diffdays = visit - firstvis;
 diffchol = chol - firstcho;
 output;
end;
run;

proc print data=twodiffs;
var id firstvis visit diffdays firstcho chol diffchol;
format firstvis mmddyy8.;
run;

OBS ID FIRSTVIS VISIT DIFFDAYS FIRSTCHO CHOL DIFFCHOL
 1 01 01/05/89 02/18/91 774 400 260 -140
 2 02 12/25/91 12/25/91 0 200 200 0
 3 03 01/01/90 02/02/91 397 387 380 -7
 4 04 05/15/91 07/05/92 417 380 261 -119

In example 8.8, the value of the variable VISIT was stored when the first observation within an ID group
was read. In example 8.9, both the date (the value of the variable VISIT) and the initial cholesterol
reading are stored. When the last observation in an ID group is read, the difference in days between the
first and last visit, and the difference in cholesterol can be calculated.

If you read a data set with a combination of SET and BY and use more than one by variable, you create
more than one pair of first.<var> and last.<var> variables. Each variable listed in the BY statement
results in a pair of first.<var> and last.<var> variables.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #93

...Example 8.10...
data test;
input x y z;
datalines; 1
1 1 100
1 1 110
1 1 120
2 1 10
3 1 99
1 2 200
1 2 210
3 2 199
1 3 300
1 3 310
;
run;
proc sort data=test; 2
by x y;
run;

data first_last;
set test; 3
by x y;
firstx = first.x;
firsty = first.y; 4
lastx = last.x;
lasty = last.y;
run;

proc print data=first_last;
var x y z firstx lastx firsty lasty;
run;

Obs x y z firstx lastx firsty lasty 5
 1 1 1 100 1 0 1 0
 2 1 1 110 0 0 0 0
 3 1 1 120 0 0 0 1
 4 1 2 200 0 0 1 0
 5 1 2 210 0 0 0 1
 6 1 3 300 0 0 1 0
 7 1 3 310 0 1 0 1
 8 2 1 10 1 1 1 1
 9 3 1 99 1 0 1 1
 10 3 2 199 0 1 1 1

1 A data set is created that will be used to show first.<var> and last.<var> values for two by variables, X
and Y.

2 SET with a BY statement requires that data be sorted according to the BY variable(s).
3 A SET statement in combination with a BY statement is used to read the data set. There are two BY

variables.
4 Since first.<var> and last.<var> variables are temporary (i.e. they only exist during the execution of

the data step), new variables are created to hold the their values for subsequent printing.
5 The output from PROC PRINT shows the values of all the first.<var> and last.<var> variables.

If you look at the values of the variable X, you can see that the values of the first.X and last.X are what
you have already seen in the previous examples. However, notice that the value of first.Y and last.Y
cycle within each value of X.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #94

(9) FUNCTIONS
There are a large number of SAS functions that allow you to work with data WITHIN a single observation.
Remember that SAS PROCs work WITHIN variables/ACROSS observations. SAS functions work
ACROSS variables/WITHIN observations. A number of SAS functions have already been introduced. In
the section on DATES, several functions were shown that could be used to work with date (numeric)
variables, e.g. MDY, WEEKDAY, TODAY, YRDFIF. One feature common to all SAS functions is that
they are all followed by a set of parentheses that contain zero or more arguments. The arguments
(sometimes referred to as parameters) are information needed by the function to produce a result. The
TODAY function requires no argument, just the parentheses, to return the value of the current date. The
WEEKDAY function requires one argument, a SAS date. The YEARDIF function requires three
arguments. Just as SAS variables can be classed as either NUMERIC or CHARACTER, SAS functions
can be divided into those that are used with numeric variables and those that are used with character
variables. There are only a few functions that can be used with either type of data.

...NUMERIC FUNCTIONS
SAS numeric functions can be further divided into categories that describe the action of the function. The
SAS language manual divides numeric functions into the following categories: arithmetic, date and time
(dates are numeric variables), financial, mathematical (or 'more complicated arithmetic'), probability,
quantile, random number, simple statistic, special, trigonometric and hyperbolic (no exaggeration),
truncation. The following example uses grades for 29 students who took a series of exams.

...Example 9.1...
data midterm (drop=g1-g29); 1
input type : $7. g1-g29;
mingr = min(of g1-g29); 2
maxgr = max(of g1-g29);
meangr = mean(of g1-g29);
stdgr = std(of g1-g29);
vargr = var(of g1-g29);
missgr = nmiss(of g1-g29);
nmbgr = n(of g1-g29);
meangr = round(meangr,.1); 3
stdgr = round(stdgr,.1);
vargr = round(vargr,.1);
label
type = 'TEST'
mingr = 'MINIMUM'
maxgr = 'MAXIMUM'
meangr = 'MEAN'
stdgr = 'STANDARD DEVIATION'
vargr = 'VARIANCE'
missgr = '# MISSING'
nmbgr = '# NON-MISSING'
;
datalines;
QUIZ1 6 8 5 10 10 9 10 8 9 9 7 10 10 10 10 8 10 6 10 10 10 10 . 10 8 10 10 10 10
QUIZ2 10 10 2 10 10 . 10 10 10 10 10 2 10 10 10 10 10 10 10 10 10 10 . 10 10 10 10 10 10
MIDTERM 9 2 0 9 7 10 10 10 8 9 5 3 9 8 9 10 2 10 9 9 8 10 . 8 8 10 9 10 8
QUIZ3 10 2 2 18 19 12 20 . 10 8 . 2 . 10 10 18 12 10 15 10 5 15 . 5 12 20 20 20 20
QUIZ4 23 5 5 20 25 15 25 22 25 18 18 2 18 22 20 22 15 18 23 22 20 25 . 20 18 25 25 20 22
FINAL 25 20 15 25 25 22 25 25 22 18 21 15 22 20 18 . 20 15 23 24 22 20 . 15 24 22 25 20 20
;
run;

proc print data=midterm label noobs;
var type nmbgr missgr meangr stdgr vargr mingr maxgr;
run;

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #95

 #
 NON- # STANDARD
 TEST MISSING MISSING MEAN DEVIATION VARIANCE MINIMUM MAXIMUM
QUIZ1 28 1 9.0 1.5 2.2 5 10
QUIZ2 27 2 9.4 2.1 4.6 2 10
MIDTERM 28 1 7.8 2.8 7.8 0 10
QUIZ3 25 4 12.2 6.1 37.3 2 20
QUIZ4 28 1 19.2 6.1 37.6 2 25
FINAL 27 2 21.0 3.3 11.2 15 25

1 Since only the new values computed in the data step are to be placed in the data set, the values of
the individual grades are dropped.

2 Several arithmetic and statistical functions are used to compute the values of new variables.
3 The ROUND function is used to round the value of three variables to one decimal place

Naming the grade variables G1 through G29 made it very simple to place the values of the grades as
arguments in the various functions. It might not be obvious, but each of the functions that used grades 1
through 29 ignored all grades with a missing value, just as would have been done if the data had been
rearranged and analyzed with PROC MEANS. Both SAS functions and SAS procedures will ignore
missing values when computing arithmetic or statistical values. The N (and NMISS) function allow you to
determine how many values were used to compute various values. The output from PROC PRINT shows
the mean, standard deviation, and variance of the grades for each question rounded to one decimal
place. These values were stored in the data set in lieu of keeping values with many decimal places. If
the ROUND function had not been used, but the following format placed in the data step or PROC
PRINT...

format meangr stdgr vargr 6.1;

the same values would have been printed, but the stored values of the variables would still have many
decimal places. The ROUND function actually changes the stored value while a FORMAT would only
affect the appearance of the variable value.

There are several other functions that will alter the stored value of a numeric variable. They differ in the
values that are returned for positive versus negative numbers.

...Example 9.2...
data alter;
input x;
ceil_x = ceil(x);
floor_x = floor(x);
int_x = int(x);
round_x = round(x,1.);
y = x;
format y 6.;
label
x = 'ORIGINAL VALUE X'
y = 'FORMATTED VALUE OF X'
ceil_x = 'CEILING'
floor_x = 'FLOOR'
int_x = 'INTEGER'
round_x = 'ROUND'
;
datalines;
7.5
-7.5
8.5
-8.5
;
run;

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #96

proc print data=alter noobs label;
var x y int_x round_x ceil_x floor_x;
run;

ORIGINAL FORMATTED
 VALUE X VALUE OF X INTEGER ROUND CEILING FLOOR
 7.5 8 7 8 8 7
 -7.5 -8 -7 -8 -7 -8
 8.5 9 8 9 9 8
 -8.5 -9 -8 -9 -8 -9

The results of the ceiling and floor functions depend on the whether the value of a variable is positive or
negative. The integer and round functions work the same regardless of sign. The formatted value of the
variable Y is the same as the rounded value, but Y is still stored as 7.5, -7.5, etc. since it is stored with
the same values as X (remember, Y=X in the data step).

There are a number of ways of expressing the arguments required by functions that require the values of
a number of numeric variables. In example 9.1, the convention of naming variables <name>1 through
<name>N made it easy to place a large number of variable values as a function argument.

...Example 9.3...
data test;
input gradeone gradetwo gradethr;
mean_one = mean (of gradeone gradetwo gradethr);
mean_two = mean (of gradeone--gradethr);
datalines;
80 80 95
;
run;

proc print data=test noobs;
run;

gradeone gradetwo gradethr mean_one mean_two
 80 80 95 85 85

The name of each variable can be placed in the argument list. If you know the order of the variables in
the data set, the convention of specifying a list with two variable names separated by two dashes (- -) can
be used. Remember that using <start var>- -<end var> depends on the order of variables within the data
set. If you are not sure of the order, you can see what is by using PROC CONTENTS and looking at the
first column (showing the position of the variable in the data set.

As stated earlier, a function will ignore missing values. What if you use a function and the value of each
variable in the argument list is missing? The value returned by the function will also be missing. To avoid
this, you can specify the following...

sum_one = sum (of gradeone--gradethr, 0);

Adding a zero to the argument list ensures that the value returned by the function will never be missing,
even if the value of each variable in the argument list is missing. Whether you want the function to result
in missing or zero is up to you.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #97

...CHARACTER FUNCTIONS
There are a large number of SAS functions that can be used with character data. They are especially
useful if you are working with a SAS data set that contains character variables that must be 'cleaned up',
examined, split apart, combined - in a word, manipulated. What if you are give a data set with a first
name, last name, street number, street name, city, state, and zip code, each stored as a separate
variable. You want to combine the names into one variable and the address into another.

...Example 9.4...
data manyvars;
input f_name $ 1-8 l_name $ 9-20
 st_num 21-25 st_name $ 26-47
 city $ 48-59 state $ 60-61 zip $ 62-66;
datalines;
MIKE ZDEB 59 LENOX AVE ALBANY NY12203
THE PRESIDENT PENNSYLVANIA AVENUE WASHINGTON DC00001
;
run;

data nameaddr (keep=name addr);
set manyvars;
name = trim(f_name) || ' ' || l_name; 1
addr = trim(st_num) || ' ' || trim(st_name) || ', ' || 2
 trim(city) || ', ' || trim(state) || ' ' || zip;
run;

proc print data=nameaddr noobs;
run;

 name addr
MIKE ZDEB 59 LENOX AVE, ALBANY, NY 12203
THE PRESIDENT . PENNSYLVANIA AVENUE, WASHINGTON, DC 00001

1 Just as a plus sign (+) is used to add numeric variables, the operator || is used to add character
variables to on another. The name CONCATENATION is often used when referring to combining
character variables with the || operator. The text in both variables is combined to form another
variable. In addition to text, a character constant (a space) is added between the first name and last
name. The TRIM function is used to remove trailing blank characters from a variable prior to
concatenation.

2 The same process is used to form the new variable address. Notice that, in addition to blanks,
commas are added to the address.

The TRIM function removes trailing blanks. The operator '||' performs concatenation (again, jargon for
joining). Since all trailing blanks are removed with TRIM, blank spaces (and commas) are added in
various spots of the address. Notice that there is a period as the street number in the second
observation. The variable ST_NUM was read as NUMERIC. The log file that resulted from the data step
showed..

NOTE: Numeric values have been converted to character
 values at the places given by: (Line):(Column).

Since ST_NUM was used in an operation that required character variables, SAS converted the numeric
value to character as stated in the log. Missing numeric data are displayed as a period. If ST_NUM had
been read as a character variable, there would be no period, just a blank space indicating a missing
character value. How could you get rid of the extra space if the street number was missing?

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #98

The results of PROC contents run for the two datasets are...

dataset MANYVARS...
Variable Type Len

5 city Char 12
1 f_name Char 8
2 l_name Char 12
4 st_name Char 22
3 st_num Num 8
6 state Char 2
7 zip Char 5

dataset NAMEADDR...
Variable Type Len

2 addr Char 61
1 name Char 21

When a new variable is created by concatenating the values of other variables, the resulting variable is
the length of all variables being combined, plus any additional characters such as commas or spaces.
The new variable NAME has a length of 21, the combined length of variables F_NAME (8), L_NAME (12)
, plus the space added between the names. The length of ADDR is 61, It is a combination of...

ST_NUM (12) + space (1) +
ST_NAME (22) + comma/space (2) +
CITY (12) + comma/space (2) +
STATE (2) + three spaces (3) +
ZIP (5)

Where did the 12 characters come from in the street number (ST_NUM)? Remember that ST_NUM was
a numeric variable and that SAS converted it to character data when forming the address. When SAS
does such a conversion, the result is always a character variable with a length of 12. Confusing? That's
OK. It's not that important to remember exactly what occurred. The important concept is that if you
involve numeric variables in the creation of new character variables, you might get some unexpected
results.

Just as there are character functions (and operators) that allow you combine variable values, there are
also functions that allow you to separate the value of a variable into a number of new variables.

...Example 9.5...
data bignames;
input name $25. addr $40.; 1
datalines;
MIKE ZDEB 59 LENOX AVENUE, ALBANY, NEW YORK 12203
;
run;

data manyvars (drop=name addr);
set bignames;
fname = scan(name,1); 2
lname = scan(name,2);
street= scan(addr,1,','); 3
city = scan(addr,2,',');
stzip = scan(addr,3,',');
run;

proc print data=manyvars;
run;

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #99

proc contents data=manyvars noobs;
run;

fname lname street city stzip

MIKE ZDEB 59 LENOX AVENUE ALBANY NEW YORK 12203

Variable Type Len

4 city Char 200
1 fname Char 200
2 lname Char 200
3 street Char 200
5 stzip Char 200

1 A data set is created with variables that we want to take apart, i.e. use them to create more character
variables.

2 The SCAN function is used to make new variables from the variable NAME.
3 Once again, the SCAN function is used. But this time it only looks for commas when breaking the old

variable ADDR into words.

The SCAN function looks at the value of a character variable and separates it into WORDS using a
number of different characters as word boundaries. If the word boundaries are not explicitly stated as the
third argument in the function, SCAN uses the following characters to search for words...

blank . < (+ & ! $ *) ; ^ - / , % |

In example 9.6, no third argument was used when breaking up the variable NAME. SAS found BLANKS
(SPACES) in the name and used them as word boundaries. When the SCAN function was used with the
variable ADDR, SAS was told to break the variable into words base on the presence of only COMMAS.

A new feature of the SCAN function is the ability to scan text backwards using negative numbers. The
following example shows a use of this feature. The data set contains a variable address in which the last
word is always the zip code. The zip code can be extracted from the address even though the address
have different contents.

...Example 9.6...
data addr;
input address $50.;
datalines;
PO BOX 666, UTICA, NY 13502
127 LAKE AVENUE NORTH, ST LOUIS, MO 23456
ANDOVER, MA 01010
;
run;

data addr;
length zip $5;
set addr;
zip = scan(addr,-1);
run;

proc print data=addr noobs;
run;

 zip address
13502 PO BOX 666, UTICA, NY 13502
23456 127 LAKE AVENUE NORTH, ST LOUIS, MO 23456
01010 ANDOVER, MA 01010

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #100

An important feature of the SCAN function is shown in the output from PROC CONTENTS. The SCAN
function always results in variables with a length of 200. A LENGTH statement should be used to
explicitly set the length of all variables created via the SCAN function. Otherwise, you will end up with
some very large data sets.

What if we have two data sets and we want to compare the values of character variables in the two data.
If the variables are names, it is possible that the names in one of the files contained some lower case
letters while all names were upper case in the other. One file might have embedded characters other
than letters in the names, e.g. O'Henry in one versus OHenry in the other, SMITH JR. in one versus
SMITH JR in the other, Jones in one JONES in the other, etc. The COMPRESS function will allow us to
get rid of unwanted characters (ah, if life were so simple), while the UPCASE function will convert
lowercase letters to uppercase.

...Example 9.7...
data up_comp;
input oldname $char13.;
newname1 = compress(oldname); 1
newname2 = compress(oldname,"'."); 2
newname3 = compress(oldname,"'. "); 3
newname4 = upcase(newname1); 4
newname5 = upcase(newname2);
newname6 = upcase(newname3);
datalines;
Mc Donald
Jones
O'Henry
SMITH JR.
;
run;

proc print data=up_comp noob;
run;

oldname newname1 newname2 newname3 newname4 newname5 newname6
Mc Donald McDonald Mc Donald McDonald MCDONALD MC DONALD MCDONALD
Jones Jones Jones Jones JONES JONES JONES
O'Henry O'Henry OHenry OHenry O'HENRY OHENRY OHENRY
SMITH JR. SMITHJR. SMITH JR SMITHJR SMITHJR. SMITH JR SMITHJR

1 The COMPRESS function is used to make a new variable. Without a second argument, the function
will only remove spaces from a variable.

2 A second argument is added to the COMPRESS function, i.e. list of characters to be removed from
the variable. However, once a second argument is used, COMPRESS no longer automatically
removes spaces.

3 A space is added to the second argument used with the COMPRESS function.

There is another function that performs a task similar to that of the COMPRESS function. COMPBL
removes blanks just as the COMPRESS function does. However, it reduces multiple consecutive blanks
to one blank rather than removing all blanks.

...Example 9.8...
data mult_spaces;
input name $char50.;
name_compress = compress(name); 1
name_compbl = compbl(name); 2
datalines;
MIKE ZDEB
 Mike Zdeb
;
run;

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #101

proc print data=mult_spaces;
run;

 name_ name_
name compress compbl
MIKE ZDEB MIKEZDEB MIKE ZDEB 3
 Mike Zdeb MikeZdeb Mike Zdeb

Variable Type Len
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
1 name Char 50
3 name_compbl Char 200 4
2 name_compress Char 50

1 The COMPRESS functions is used to remove all spaces from a character variable.
2 The COMBL function is used to convert multiple spaces to a single space in a character varaible.
3 Results of the two functions are show that COMPBL is not always the answer to fixing character data.

There are still spaces at the beginning of the value of the variable name in observation two.
4 While the COMPRESS function resulted in a variable with the same length as the character variable

used with the function, the COMBL function produced a variable with a length of 200. Just as when
the SCAN function is used, a LENGTH statement should be used whenever the COMPBL function is
used.

While the COMPBL has reduced multiple spaces between the first and last names within the variable
name, it has left a space at the beginning of the name in the second observation. There are two
functions that can reposition text within a character variable, LEFT and RIGHT.

...Example 9.9...
data left_right;
length name_left name_right $30.; 1
input name $char50.;
name_left = compbl(name);
name_left = left(name_left); 2
name_right = compbl(name);
name_right = right(name_right); 3
datalines;
MIKE ZDEB
 Mike Zdeb
;
run;

proc print data=left_right;
format name_right $30.; 4
run;

name_left name_right name
MIKE ZDEB MIKE ZDEB MIKE ZDEB
Mike Zdeb Mike Zdeb Mike Zdeb

1 A LENGTH statement is used for the new variables that are created with the COMBL function.
2 The LEFT function left justifies the value of the variable name_left.
3 The RIGHT function right justifies the value of the variable name_right.
4 A FORMAT statement is used in PROC PRINT to show the entire value of the variable name_right.

What would the results of PROC PRINT look like with this format statement?

Another commonly used character function is SUBSTR (or substring). The SUBSTR function allows you
to extract portions of a variable. The SCAN function performs a similar task, but it depends on the
presence of delimiters in a variable to make decisions as to how to extract portions of an old variable to
create a new variable. The SUBSTR function requires an explicit statement as to what portion of an old
variable to extract.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #102

...Example 9.10...
data names;
input name $20.; 1
datalines;
MICHAEL ZDEB
PUFF DADDY
GEORGE WASHINGTON
;
run;

data names;
length first2 $8 last2 $12; 2
set names;
first1 = substr(name,1,8); 3
first2 = substr(name,1,8);
last1 = substr(name,9,12);
last2 = substr(name,9,12);
run;

proc print data=names noobs;
var name first1 first2 last1 last2;
run;

proc contents data=names;
run;

 name first1 first2 last1 last2
MICHAEL ZDEB MICHAEL MICHAEL ZDEB ZDEB
PUFF DADDY PUFF PUFF DADDY DADDY
GEORGE WASHINGTON GEORGE GEORGE WASHINGTON WASHINGTON

Variable Type Len

4 first1 Char 20
1 first2 Char 8
5 last1 Char 20
2 last2 Char 12
3 name Char 20

1 A data set is created with a variable (NAME) that has different information (first and last names) in the

same location across observations.
2 Lengths are assigned to two new variables.
3 New variables are created using the SUBSTR function. The function requires three arguments: a

variable name; a starting position within the variable for extraction of text; an ending position within
the variable to stop text extraction.

In the output from PROC PRINT, variable FIRST1 looks the same as FIRST2, and LAST1 looks the same
as LAST2. However, look at the lengths of the variables shown in the results of PROC CONTENTS. The
two new variables FIRST1 and LAST1 have the same length as the variable NAME. This is the default
behavior of the SUBSTR function, i.e. any variable created using the SUBSTR function has the same
length as the variable used as the first argument. A LENGTH statement was used to assign lengths to
variables FIRST2 and LAST2.

The SUBSTR function can also occur on the left side of the equals sign in a SAS statement. When used
on the left side of the ='s, it allows you to replace characters in selected positions within the value of a
variable. One such use of the SUBSTR function is shown in the next example. You have a data file that
contains a first and last name for each subject in a study and all the names have been entered in upper
case. You want to write a report using the names, but want only the first letter of each name to be upper
case, the rest lower case.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #103

...Example 9.11...
data study;
length firstn $10 lastn $20;
input firstn lastn; 1
datalines;
MICHAEL ZDEB
BRITNEY SPEARS
PUFF DADDY
;
run;

data study;
set study;
firstn = lowcase(firstn); 2
lastn = lowcase(lastn);
substr(firstn,1,1) = upcase(substr(firstn,1,1)); 3
substr(lastn,1,1) = upcase(substr(lastn,1,1));
name = trim(lastn) || ', ' || firstn; 4
run;

proc print data=study noobs;
run;

firstn lastn name
Michael Zdeb Zdeb, Michael
Britney Spears Spears, Britney
Puff Daddy Daddy, Puff

1 A data set is created in which all variable values are in UPPER CASE.
2 The LOWCASE function is used to change all characters in variables to lower case.
3 The SUBSTR function is used on the left side of the ='s to specify what characters in the variables

should be altered by the functions on the right side of the ='s. On the right side, the SUBSTR function
is used to extract the first letter from the variables. The UPCASE function is used to convert the case
of the first letter. The SUBSTR function on the left side of the ='s results in the uppercase character
being substituted in the first and last names.

4 A new variable is created by concatenating old variables.

Four character functions can be used to search for the presence of specified characters or groups of
characters. The INDEXC function looks for the occurrence of a single character within a given character
variable while the INDEX function looks for the occurrence of the entire string of characters. The
INDEXW function is similar to the INDEX function. However, the string of characters must be found as a
separate word, not embedded within the text being searched. The VERIFY function performs a task
similar (but opposite) to that of the INDEXC function in that it looks for characters that are not present
within a given list of characters. The next

...Example 9.12...
data test;
input
@01 address $char20.
@21 zip $char5.
;
address_index = index(address,'ST'); 1
address_indexw = indexw(address,'ST'); 2
zip_indexc = indexc(zip,'0123456789'); 3
zip_verify = verify(zip,'0123456789'); 4
datalines;
125 FIRST AVENUE 10095
1 SECOND ST 1oo82
;
run;

proc print data=test noobs;
run;

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #104

 address_ address_ zip_ zip_
 address zip index indexw indexc verify
125 FIRST AVENUE 10095 8 0 1 0
1 SECOND ST 1oo82 10 10 1 2

1 The INDEX function searches for the character string ST at any location with the value of the variable
address.

2 The INDEXW function also searches for the character string ST, but as a separate word (not
embedded within other text, i.e. not part of a word).

3 The INDEXC function searches for the first occurrence of any of the characters in the given list of
numbers within the variable zip.

4 The VERIFY function searchs for characters that are not in the given list of numbers within the
variable zip.

In the first observation, the INDEX function found the character string ST within the address at position 8
(the eight character of the address). The INDEXW did not identify ST as a separate word and returned a
value of zero, or not found. The first character in the zip code matched a character in the list searched by
the INDEXC function and the function returned a value of 1. All the characters in the zip in the first
observation matched the list used in the VERIFY function. Therefore, it returned a value of zero
indicating that no unlisted characters were found.

Using the same functions with data from the second observation produces different results. Once again,
the INDEX function finds the string ST in the address, but the INDEXW function also identifies the string
as a separate word and returns a value as to the position where the word is found in the address. The
INDEXC function once again finds a one as the first character of the address. However, the second and
third characters of the zip are not zeroes, but o's (OHs). The VERIFY function returns a value of 2, the
position where the first unlisted character was found.

Two character functions allow you to alter the contents of a character variable. The SUBSTR function
has already been used (example 9.10) to replace text at specified positions within a character variable,
The TRANSLATE and TRANWRD can search for and replace single characters or strings of characters.
The SUBSTR function requires a specific position to be identified when altering the content of a character
variable. Both TRANSLATE and TRANWRD find the position of the text to be replaced rather than
having it specified.

...Example 9.13...
data fix_zips;
input @01 zip $5.;
fixed_zip = translate(zip,'0011',' olL'); 1
datalines;
12201
122 1 2
122o1
l220L
1220
;
run;

proc print data=fix_zips noobs;
run;

 fixed_
 zip zip
12201 12201
122 1 12201
122o1 12201
l220L 12201
1220 12200

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #105

1 The TRANSLATE function is used to convert text within a character variable.
2 The observations contain a number of errors that are to be corrected with the TRANSLATE function.

There are OHs and ELs in some locations rather than zeroes and ones. There re also spaces rather
than zeroes.

The TRANSLATE function requires three arguments. The first is the variable whose contents will be
altered. The second and third are the 'to' and 'from' strings. The TRANSLATE function looks for
characters in the 'from' string and replaces them with characters in the 'to' string. Characters are
matched one-to-one, i.e. the first 'to' character replaces the first 'from' character, etc.

The TRANSLATE function replaces individual characters. If you want to search for and replace an entire
string of characters, you must use the TRANWRD function.

...Example 9.14...
data test;
input oldaddr $char40.;
address = upcase(oldaddr); 1
address = compress(address,'.'); 2
address = tranwrd(address,'BOULEVARD','BLVD'); 3
address = tranwrd(address,'STREET','ST');
address = tranwrd(address,'AVENUE','AVE');
address = tranwrd(address,' AV ',' AVE ');
address = tranwrd(address,'WEST','W');
datalines;
59 Lenox Avenue
100 MADISON AVE.
88 RAVEN LN
2 Manning Boulevard
15 West 155th Street
3 WESTERN AVENUE
;
run;

proc print data=test noobs;
run;

OLDADDR ADDRESS
59 Lenox Avenue 59 LENOX AVE
100 MADISON AVE. 100 MADISON AVE
88 RAVEN LN 88 RAVEN LN
2 Manning Boulevard 2 MANNING BLVD
15 West 155th Street 15 W 155TH ST
3 WESTERN AVENUE 3 WERN AVE

1 A new variable, ADDRESS, is created from the old address, OLDADDR, using the uppercase
function.

2 Periods are removed from the address using the COMPRESS function.
3 A series of changes is made to the new variable, searching for and replacing text strings.

The TRANWRD function searches for and replaces entire character strings. Notice that the second and
third arguments of the TRANWRD function are 'from' then 'to' strings, the opposite of the TRANSLATE
function. Also notice that you must be careful when specifying the 'from' string. In the example, 'AV' was
surrounded by blanks since it could occur as part of a real word. Without the surrounding blanks, the
instruction to convert 'AV' to 'AVE' would have resulted in occurrences of the string 'RAVEEN' in the third
observation. The string 'WEST' was NOT surrounded by blanks. The instruction to convert 'WEST' to
'W" was adequate when modifying the fifth observation, but caused an unwanted result for the sixth,
resulting in "WESTERN' being converted to 'WERN'.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #106

The last three character functions to be discussed are LENGTH, REVERSE, and REPEAT. The
LENGTH function returns the length of a character variable, specifically the position of the last non-blank
character. The REVERSE function reverses the positions of text within a character string, while the
REPEAT function can be used to create a character variable by repeating one or more characters a given
number of times.

...Example 9.15...
data last_three;
input name $50.; 1
datalines;
MICHAEL ZDEB
BRITNEY SPEARS
PUFF DADDY
;
run;

data new;
set last_three;
reversed_name = reverse(name); 2
first_name = scan(name,1); 3
last_name = scan(name,2);
many_char = repeat('*',3); 4
many_chars = repeat('+-',3);
many_firsts = repeat(trim(first_name),3);
length_first = length(first_name); 5
length_last = length(last_name);
length_char = length(many_char);
length_chars = length(many_chars);
length_firsts = length(many_firsts);
run;

proc contents data=new;
run;

proc print data=new;
run;

proc means data=new maxdec=0 max;
var length_:;
run;

Variable Type Len

first_name Char 200 6
last_name Char 200
length_char Num 8
length_chars Num 8
length_first Num 8
length_firsts Num 8
length_last Num 8
many_char Char 200
many_chars Char 200
many_firsts Char 200
name Char 50
reversed_name Char 50

 first_ last_
 name reversed_name name name
MICHAEL ZDEB BEDZ LEAHCIM MICHAEL ZDEB
BRITNEY SPEARS SRAEPS YENTIRB BRITNEY SPEARS
PUFF DADDY YDDAD FFUP PUFF DADDY

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #107

many_ many_ length_ length_ length_ length_ length_
char chars many_firsts first last char chars firsts
**** +-+-+-+- MICHAELMICHAELMICHAELMICHAEL 7 4 4 8 28
**** +-+-+-+- BRITNEYBRITNEYBRITNEYBRITNEY 7 6 4 8 28
**** +-+-+-+- PUFFPUFFPUFFPUFF 4 5 4 8 16

Variable Maximum

length_first 7
length_last 6
length_char 4
length_chars 8
length_firsts 28

1 A data set is created with one variable, NAME, a character variable with a length of 50.
2 The REVERSE function is used to create a new variable from the variable name.
3 The first and last names are extracted and placed in separate variables using the SCAN function.
4 Three new variables are created using the REPEAT function. The first repeats one character. The

second repeats a string of two characters, while the third repeats the value of the variable first_name.
Why was the TRIM function used? What would happen if it was not used?

5 The LENGTH function is used to find the position of the last non-blank character in a number of
variables.

6 The results of PROC CONTENTS shows the lengths of the new variables. Both the SCAN and
REPEAT functions result in variables with a length of 200. The output from PROC PRINT shows that
new varaibles are much shorter than 200 characters. Finally, PROC MEANS shows values that could
be used in a length statement to change the lengths of some of the character variables.

...OTHER FUNCTIONS
If a data step is executing and a character variable is used as a numeric variable (or vice-versa), SAS
performs a type conversion and allows the data step to continue. The LOG for the data step will contain
a message telling you that SAS has performed such a conversion. There is no such conversion done in
procedures. If you attempt to use character variables in a procedure that requires numeric variables, no
conversion is done and the LOG will contain and error message, not a note about type conversion.

There are SAS functions for that can be used to convert variable types. You must convert variable types
when you have character variables and need numeric variables to use a procedure such as PROC
MEANS. Even in those instances when SAS will convert data types for you in a data step, it is more
efficient to use the SAS functions for type conversion.

...Example 9.16...
data testa;
input x $ y street $ & zip; 1
tot1 = x + y;
tot2 = sum(of x y);
st_zip = street || ' ' || zip;
datalines;
1 2 59 LENOX AVE 12203
;
run;

data testb (drop=oldx oldzip);
set testa (rename=(x=oldx zip=oldzip)); 2
x = input(oldx,2.); 3
zip = put(oldzip,5.); 4
tot1 = x + y;
tot2 = sum(of x y);
st_zip = street || ' ' || zip;
run;

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #108

proc contents data=testa;
run;

proc contents data=testb;
run;

THE LOG... 5

1750 data testa;
1751 input x $ y street $ & zip;
1752 tot1 = x + y;
1753 tot2 = sum(of x y);
1754 st_zip = street || ' ' || zip;
1755 datalines;

NOTE: Character values have been converted to numeric values at the places given by:
 (Line):(Column). 1752:8 1753:15
NOTE: Numeric values have been converted to character values at the places given by:
 (Line):(Column). 1754:29
NOTE: The data set WORK.TESTA has 1 observations and 7 variables.
NOTE: DATA statement used: real time 0.00 seconds

1757 ;
1758 run;
1759
1760 data testb (drop=oldx oldzip);
1761 set testa (rename=(x=oldx zip=oldzip));
1762 x = input(oldx,2.);
1763 zip = put(oldzip,5.);
1764 tot1 = x + y;
1765 tot2 = sum(of x y);
1766 st_zip = street || ' ' || zip;
1767 run;

NOTE: There were 1 observations read from the data set WORK.TESTA.
NOTE: The data set WORK.TESTB has 1 observations and 7 variables.
NOTE: DATA statement used: real time 0.00 seconds

(contents of data set TESTA)...

Variable Type Len

st_zip Char 15
street Char 8
tot1 Num 8
tot2 Num 8
x Char 8
y Num 8
zip Num 8

(contents of data set TESTB)...

Variable Type Len

st_zip Char 15
street Char 8
tot1 Num 8
tot2 Num 8
x Num 8
y Num 8
zip Char 5

1 The INPUT statement reads X as a character variable and ZIP as a numeric variable, even though X
is used later in two calculations and ZIP is later treated as a character variable.

2 The data set TESTA is read with a set statement and a RENAME option is used to change the names
of two variables.

3 The INPUT function converts a character variable to a numeric variable.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #109

4 The PUT function converts a numeric variable to a character variable.
5 The LOG from the first data step shows that variable type conversion was done in the first data step,

when the character variable X was used as a numeric variable and when the numeric variable ZIP
was used as a character variable. However, there are no notes in the LOG file when the second data
step executes since functions were used to change variable types prior to using the varaibles.

When computing both TOT1 and TOT2, the variable X was used as a NUMERIC variable even though it
is a CHARACTER variable. In creating the new variable ST_ZIP by concatenating STREET and ZIP, the
variable ZIP was used as a CHARACTER variable even though it is a NUMERIC variable. The LOG
indicates that SAS was tolerant of the misuse of the variables and was able to complete the data step
with no errors, just NOTES. Though SAS will correct such use of variables, there is a price to pay in that
each of these type conversions takes a bit of CPU time. With a few observations and passes through the
data step, the price is cheap. With millions of passes through a data step, it is good idea to learn how to
convert variable types explicitly.

The original data set TESTA contains a CHARACTER variable X and a NUMERIC variable ZIP. A
rename data set option is used in the second data step to give variables X and ZIP new names, OLDX
and OLDZIP respectively. An INPUT function is used for CHARACTER-to-NUMERIC conversions,
creating NUMERIC variable X. A PUT function is used for NUMERIC-to-CHARACTER conversion,
creating CHARACTER variable ZIP. The same arithmetic and concatenation operations are performed
as in the previous example, but there are no NOTES in the LOG. PROC CONTENTS shows that the
revised data set TEST contains a NUMERIC X and CHARACTER ZIP. Notice the length of the variables.
Variable X has a length of X (remember, all NUMERIC variables have a default length of 8). The second
argument in the INPUT function should be large enough to accommodate reading the widest value of X.
For example, if X had been 1000, the second argument in the INPUT function would have to been at least
4. The INPUT function reads variable values just as if they were being read from a file of raw data, but it
really is reading a value stored in the computers memory using the informat specified as the second
argument.

Variable ZIP takes its length from the second argument in the PUT function, in this case 5. Instead of
READING data as it does with the INPUT function, SAS is WRITING data with the PUT function. Thus,
the second argument in the PUT function is a FORMAT, not an INFORMAT as with the INPUT function.
The second argument in the PUT function should be wide enough to display the value of the first
argument. Also, since you are WRITING a NUMERIC value, you must use a NUMERIC format.

The PUT function can also be used with character variables, in effect performing a CHARACTER-to-
CHARACTER conversion. The SUBSTR function was used earlier to convert a 5-digit diagnosis code to
a 3-digit code...

pdx3=substr(pdx5,1,3);

The SUBSTR function would have given PDX3 a length of 5 (the same as variable PDX5). If the PUT
function had been used to perform the same task, PDX3 would have a length of 3...

pdx3=put(pdx5,$3.);

The final function to be discussed is the LAG function. The LAG function allows you to look backward
when a data step is running and use the values of variables from observations previous to that being
processed. When working with time series data, one common task is to compute a moving average.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #110

...Example 9.17...
data test;
input year : $4. num den;
rate1 = 1000 * num / den; 1
num_one = lag1(num); 2
num_two = lag2(num); 3
den_one = lag1(den);
den_two = lag2(den);
rate3 = 1000 * (num + lag1(num) + lag2(num)) / (den + lag1(den) + lag2(den)); 4
datalines;
1990 10 1234
1991 11 1000
1992 13 1500
1993 15 1999
1994 9 1100
1995 8 1000
;
run;

proc print data=test;
run;

from the LOG...

NOTE: Missing values were generated as a result of performing an operation on missing values.
Each place is given by: (Number of times) at (Line):(Column).
2 at 1826:14 1 at 1826:21 2 at 1826:33 2 at 1826:46 1 at 1826:53 2 at 1826:65

the OUTPUT from PROC PRINT...

Obs year num den rate1 num_one num_two den_one den_two rate3
 1 1990 10 1234 8.1037
 2 1991 11 1000 11.0000 10 . 1234 . .
 3 1992 13 1500 8.6667 11 10 1000 1234 9.10552
 4 1993 15 1999 7.5038 13 11 1500 1000 8.66859
 5 1994 9 1100 8.1818 15 13 1999 1500 8.04523
 6 1995 8 1000 8.0000 9 15 1100 1999 7.80678

1 A rate is calculated using data from one year.
2 The LAG function is used to bring back the value of the variable NUM from the last time the LAG

function was executed in this statement.
3 The LAG function is used to bring back the value of the variable NUM not from the last time the LAG

function was executed in this statement, but from two times ago.
4 The current and lagged values are used to compute a three year rate.

The LAG function uses a SUFFIX to indicate 'how far back' the data step goes when looking for the
values of variables in previous observations. Each time the LAG function is used with a variable, it stores
a value of that variable for use in a later cycle of the data step. During the first pass through the data step
in this example, the LAG function has not been executed with either variable NUM or DEN. Therefore
the values of LAG1(var) and LAG2(var) are missing. When the missing values are used to calculate
RATE3, the result is missing. During the next pass through the data step, there is one LAG value for both
NUM and DEN, i.e. LAG1(var), but not LAG2(var) values, resulting in a missing value for RATE3. The
excerpt from the LOG tells you the story about the missing values. Once the third observation is reached,
there are LAG1 and LAG2 values and RATE3 is calculated as a three-year moving average. The value
of RATE3 for 1992 is calculated using data from 1990, 1991, and 1992, RATE3 for 1993 uses data from
1991, 1992, and 1993.

There is another function that works with lagged data, the DIF function. The DIF function returns the
difference between the current value of the argument and its value the last time the DIF function was
executed. Using the same data as were used in example 9.17, the next example shows how the diff
function works.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #111

...Example 9.18...
data differences;
set test;
change_num = dif(num); 1
change_den = dif(den);
run;

proc print data=differences noobs;
var num change_num den change_den;
run;

 change_ change_
num num den den
 10 . 1234 . 2
 11 1 1000 -234
 13 2 1500 500
 15 2 1999 499
 9 -6 1100 -899
 8 -1 1000 -100

1 The DIF function is used to compute differences in the variables NUM and DEN from one observation
to the next.

2 The ouput from PROC PRINT shows the values of NUM and DEN, plus the changes from observtion-
to-observation. Notice that the first value for each change is missing since there's no preceding
observation available to use to calculate a difference.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #112

(10) REARRANGING DATA
If you want to conduct an analysis across observations in a data set, you can use SAS procedures. If you
want to conduct an analysis within observations, you can use SAS functions. However, there are
occasions when neither a procedure nor a function will suffice. Your data may be arranged in such a way
that the only way to complete a given task is to first rearrange the data set. Rearranging in this sense
means converting variables into observations or observations into variables. Rather than discuss
methods of rearranging and showing the situations where they are applicable, two different problems are
presented and methods for solving the problems are shown.

...ONE-TO-MANY
The first problem is one in which you have observations that contain multiple occurrences of a medical
diagnosis. Each observation represents one person and your task is to create a table that shows how
often each diagnosis occurs within the data set. The following creates the data set to be used...

data many_dx;
infile datalines missover;
length id $2 dx1-dx5 $3;
input id dx1-dx5;
datalines;
01 647 038
02 428 518 416
03 642 674 431 648
04 415 280 997 427 453
05 641 668 648 666 641
06 670 041 728 427 518
07 864 866
08 648 801
09 666 666 286 286
10 659 560 348 507
;
run;

One approach is to use PROC FREQ on each of the five diagnoses and add the results of the five
tables...

proc freq data=many_dx;
tables dx1-dx5;
run;

Another approach is to rearrange the data so a new data set to be analyzed contains only one variable,
diag, with one observation for each diagnosis in the original data set, i.e. create many observations from
one observation (one-2-many).

...Example 10.1...
data all_dx (keep=diag); 1
set many_dx;
diag = dx1; if diag ne ' ' then output; 2
diag = dx2; if diag ne ' ' then output;
diag = dx3; if diag ne ' ' then output;
diag = dx4; if diag ne ' ' then output;
diag = dx5; if diag ne ' ' then output;
run;

proc freq data=all_dx;
table diag;
run;

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #113

 Cumulative Cumulative
diag Frequency Percent Frequency Percent

038 1 2.78 1 2.78
041 1 2.78 2 5.56
280 1 2.78 3 8.33
286 2 5.56 5 13.89
348 1 2.78 6 16.67
415 1 2.78 7 19.44
416 1 2.78 8 22.22
427 2 5.56 10 27.78
428 1 2.78 11 30.56
431 1 2.78 12 33.33
453 1 2.78 13 36.11
507 1 2.78 14 38.89
518 2 5.56 16 44.44
560 1 2.78 17 47.22
641 2 5.56 19 52.78
642 1 2.78 20 55.56
647 1 2.78 21 58.33
648 3 8.33 24 66.67
659 1 2.78 25 69.44
666 3 8.33 28 77.78
668 1 2.78 29 80.56
670 1 2.78 30 83.33
674 1 2.78 31 86.11
728 1 2.78 32 88.89
801 1 2.78 33 91.67
864 1 2.78 34 94.44
866 1 2.78 35 97.22
997 1 2.78 36 100.00

1 A new data set is created that contains only one variable, DIAG.
2 The value for each diagnosis (dx1 through dx5) in the original data set is placed in the variable diag.

If the value is not missing, an observation is output to the new data set.

Using the new, rearranged data, there is only one table needed to count all the diagnosis in the original
data set. The method used in example 10.1 is fine when there are a small number of diagnoses to be
rearranged into a single variable. If there were many more diagnosis within each record in the original
data set, this method would still work. There would just be a lot more SAS code since you have to
process each diagnosis. Another solution involves the use of an array.

...Example 10.2...
data diags (keep=diag);
set many_dx;
array dx(5) dx1-dx5; 1
do j=1 to 5; 2
 diag=dx(j); 3
 if diag ne ' ' then output;
end; 4
run;

proc freq data=diags;
table diag;
run;

1 An array is used to store values of the variables dx1 through dx5.
2 A DO loop is used to look at each element of the array dx (the same as looking at the values of

variables dx1 through dx5).
3 The same type of logic is used as in example 10.1 except an array element is used instead of the

original variable name.
4 An END statement closes the DO loop.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #114

Arrays are merely alternative ways of referring to variables. That is a simple definition and not all
inclusive. However, it describes the use of an array in example 10.2. The use of arrays is tied to the use
of DO loops. Loops allow you to execute one or more SAS instructions a given number of times. The
loop starts with a DO statement and ends with an END statement. There are many types of loops. The
one in example 10.2 uses a variable (J) as a counter. The value of 'J' starts at one and ends at five. All
statements between the DO and END statements are executed five times. Within the loop, the variable
DIAG is set equal to array elements. When J=1 (the first time through the loop), DIAG is set equal to
DX(1), i.e. variable DX1. The last time through the loop, J=5 and DIAG is set equal to DX(5), i.e. variable
DX5.

The advantage of this method is that no matter how many diagnoses are present in the original data, the
data step would not be any longer. Only the size of the array and number of passes through the do loop
would change.

...Example 10.3...
data many_dx;
infile datalines missover;
length id $2 dx1-dx15 $3;
input id dx1-dx15; 1
datalines;
01 647 038 320 348 V66
02 428 518 416 710 710 424 666 443
03 642 674 431 648 584 427 518 427 V46 038 648 663 666 648 535
04 415 280 997 427 453 626 414 250 218 458
05 641 668 648 666 641 668 668 669 669 672 666 665 664 648 622
;
run;

data diags (keep=diag);
set many_dx;
array dx(15); 2
do j=1 to 15; 3
 diag=dx(j);
 if diag ne ' ' then output;
end;
run;

proc freq data=diags;
table diag;
run;

1 The original data set now contains fifteen diagnoses per observation.
2 An array is used with 15 elements. If no list of variables follows the array name, the variables are

assumed to have the same name as the array - in this case dx1-dx15.
3 The upper limit on the loop is now 15.

The data step that creates the new data set is no longer than in example 10.2 where there were only five
diagnoses. The LOG file from execution of the data step looks as follows...

NOTE: There were 5 observations read from the data set WORK.MANY_DX.
NOTE: The data set WORK.DIAGS has 48 observations and 1 variables.

Five observations were read from the original data set and forty-eight observations were written to the
new data set, one observation for each diagnosis found in the original data.

There is yet another method for rearranging data, PROC TRANSPOSE. This procedure can be used to
turn variables into observations, and to turn observations into variables. In each example shown thus far,
variables (diagnoses) within one observation have been turned into one variable (diag) occurring across
many observations.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #115

...Example 10.4...
data many_dx;
infile datalines missover;
length id $2 dx1-dx5 $3;
input id dx1-dx5;
datalines;
01 647 038
02 428 518 416 710
03 642
04 415 280
05 641 668 648 666 641
;
run;

proc transpose data=many_dx out=diags; 1
var dx1-dx5; 2
run;

proc print data=diags;
run;

Obs _NAME_ COL1 COL2 COL3 COL4 COL5 3
 1 dx1 647 428 642 415 641
 2 dx2 038 518 280 668
 3 dx3 416 648
 4 dx4 710 666
 5 dx5 641

1 PROC TRANSPOSE is used to rearrange the data in data set many_dx, resulting in data set diags.
2 A VAR statement specifies the variables to be transposed (rearranged).
3 The data set created by PROC TRANSPOSE has data in observations that were in variables in the

original data set.

Though the data have been rearranged, the result is not quite what was desired, a data set with one
variable (diag). Using a by statement in PROC TRANSPOSE will make the resulting data set look more
like those produced with data steps and arrays in previous examples.

...Example 10.5...
proc transpose data=many_dx out=diags;
var dx1-dx5;
by id; 1
run;

proc print data=diags;
run;

Obs id _NAME_ COL1 2
 1 01 dx1 647
 2 01 dx2 038
 3 01 dx3
 4 01 dx4
 5 01 dx5
 6 02 dx1 428
 7 02 dx2 518
 8 02 dx3 416
 9 02 dx4 710
 10 02 dx5
 11 03 dx1 642
 12 03 dx2
 13 03 dx3
 14 03 dx4
 15 03 dx5
 16 04 dx1 415
 17 04 dx2 280
 18 04 dx3

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #116

 19 04 dx4
 20 04 dx5
 21 05 dx1 641
 22 05 dx2 668
 23 05 dx3 648
 24 05 dx4 666
 25 05 dx5 641

1 A BY statement is added to PROC TRANSPOSE specifying that the variables specified in the VAR
statement should be transposed within each value of the ID variable.

2 The resulting data set is much closer to the desired data set.

Notice that in both examples 10.4 and 10.5, PROC TRANSPOSE created its own names for the variables
in the output data set, COL followed by a numeric suffix. In example 10.4, the variable named COL1 is
the one that should be named DIAG. The procedure adds a new variable to the data set, _NAME_, and
its value across the observations is the names of the variables occurring in the VAR statement. In
example 10.5, the BY variable is also added to the data set, and there are the same number of
observations within each different value of by variable, even if some have missing data in the variable
COL1. More changes to PROC TRANSPOSE can produce a data set exactly like that created in
examples 10.1 and 10,2.

...Example 10.6...
proc transpose
data=many_dx
out=diags (keep=col1 rename=(col1=diag) where=(diag ne ' ')) ; 1
var dx1-dx5;
by id;
run;

proc print data=diags;
run;

Obs diag 2
 1 647
 2 038
 3 428
 4 518
 5 416
 6 710
 7 642
 8 415
 9 280
 10 641
 11 668
 12 648
 13 666
 14 641

1 Several data set options are used on the output data set. First, a KEEP option specifies that only the
variable COL1 is to be added to the data set DIAGS. Next, a RENAME option changes the variable
name COL1 to DIAG. Finally, a WHERE option tells PROC TRANSPOSE to only output observations
in which the value of the variable DIAG is not missing.

2 The data set is exactly what is desired, containing only one variable named DIAG with no
observations having missing data..

...MANY-TO-ONE
The second problem is one in which the there is a data set containing the information on the number of
births to mothers who took drugs during their pregnancy. There are three variables in the data set: the
year the birth occurred (YEAR); whether the mother took illegal drugs, therapeutic or prescribed drugs, or
no drugs (DRUGS); the number of births in the observation (BIRTHS). The task is to put all the data for a
given year into one observation and then compute the percentage of births to mothers who took either
illegal and/or therapeutic+prescribed drugs. In the data set, the variable DRUGS has the following

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #117

values: 1, no drugs taken; 2, therapeutic+prescribed drugs taken; 3, illegal drugs taken As in the first
ONE-TO-MANY example, a data step can be used to rearrange the data.

...Example 10.7...
data births1; 1
length year $4 drugs $1;
input year drugs births @@;
datalines;
1993 1 269155 1993 2 8430 1993 3 4792 1994 1 261746
1994 2 12132 1994 3 4067 1995 1 250486 1995 2 16812
1995 3 3744 1996 1 240699 1996 2 18964 1996 3 3948
1997 1 231441 1997 2 21679 1997 3 3856 1998 1 230911
1998 2 23218 1998 3 3619 1999 1 227689 1999 2 24066
1999 3 3392 2000 1 225870 2000 2 25141 2000 3 3219
;
run;

data births2;
retain d1-d3; 2
set births1; 3
by year;
if drugs eq '1' then d1 = births; 4
else
if drugs eq '2' then d2 = births;
else
if drugs eq '3' then d3 = births;
if last.year then output; 5
run;

data births2 (keep=year total pct1 pct2); 6
set births2;
total = sum (of d1-d3);
pct1 = 100 * d2 / total;
pct2 = 100 * d3 / total;
label
year = 'YEAR OF BIRTH'
total = 'NUMBER OF BIRTHS'
pct1 = '% THERAPEUTIC OR PRESCRIBED'
pct2 = '% ILLEGAL'
;
run;

proc print data=births2 noobS label;
var year total pct1 pct2;
format total comma8. pct1 pct2 6.1;
run;

 %
 NUMBER THERAPEUTIC
YEAR OF OF OR %
 BIRTH BIRTHS PRESCRIBED ILLEGAL 7
 1993 282,377 3.0 1.7
 1994 277,945 4.4 1.5
 1995 271,042 6.2 1.4
 1996 263,611 7.2 1.5
 1997 256,976 8.4 1.5
 1998 257,748 9.0 1.4
 1999 255,147 9.4 1.3
 2000 254,230 9.9 1.3

1 A data set is created with one observation for every year-drug combination.
2 The retain statement is used to prevent values of the variables D0, D1, and D2 from being set to

missing during execution of the data step.
3 The original data are read with a SET statement plus a BY statement.
4 The value of the variable DRUGS is checked and the value of the variable births is assigned to the

appropriate variable.
5 An observation is written to a new data set when the last observation is by group is read.

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #118

6 Another data step is used to compute percentages.
7 The output from PROC PRINT shows the percentage of births to mothers who took the two different

classes of drugs within each year.

One feature of the original data set should be noted. There are three observations within each year, one
observation for no, therapeutic+prescribed, and illegal drugs. If any of the years did not have all three
such observations, the data step that creates data set BIRTHS2 would have to be modified as follow.

data births2;
retain d1-d3;
set births1;
by year;
if first.year then do;
 d1 = 0; d2 = 0; d3 = 0;
end;
if drugs eq '1' then d1 = births;
else
if drugs eq '2' then d2 = births;
else
if drugs eq '3' then d3 = births;
if last.year then output;
run;

The new statements that begin with IF FIRST.YEAR.... ensure that the values of D0, D1, and D2 are set
to zero when each new year is encountered in the data set BIRTHS1 and that data assigned to any given
year actually belong to that year. In other words, no data ends up in a a new year that have been
retained from the previous year. The data step that creates data set BIRTHS2 could be modified to use
an array.

...Example 10.8...
data births2;
array d(3); 1
retain d; 2
set births1;
by year;
if first.year then do j=1 to 3; 3
 d(j)=0;
end;
d(drugs) = births; 4
if last.year then output;
drop j; 5
run;

data births2 (keep=year total pct1 pct2);
set births2;
total = sum (of d1-d3);
pct1 = 100 * d2 / total;
pct2 = 100 * d3 / total;
label
year = 'YEAR OF BIRTH'
total = 'NUMBER OF BIRTHS'
pct1 = '% THERAPEUTIC OR PRESCRIBED'
pct2 = '% ILLEGAL'
;
run;

proc print data=births2 noobS label;
var year total pct1 pct2;
format total comma8. pct1 pct2 6.1;
run;

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #119

 %
 NUMBER THERAPEUTIC
YEAR OF OF OR %
 BIRTH BIRTHS PRESCRIBED ILLEGAL
 1993 282,377 3.0 1.7 6
 1994 277,945 4.4 1.5
 1995 271,042 6.2 1.4
 1996 263,611 7.2 1.5
 1997 256,976 8.4 1.5
 1998 257,748 9.0 1.4
 1999 255,147 9.4 1.3
 2000 254,230 9.9 1.3

1 An array statement is used.
2 The values of the variables in the array are retained.
3 A do loop is used with the array to set values of the variables D1, D2, and D3 to 0 when each new

year is encountered.
4 The value of variable DRUGS is used to assign the value of the variable BIRTHS to the appropriate

variable. Notice that DRUGS is a character variable and the index of an array must be numeric. The
LOG file shows that SAS does a character-to-numeric conversion when D(DRUGS)=BIRTHS is
encountered.

5 The index variable from the do loop is dropped.
6 The output from PROC PRINT is identical to that from the data step without the array.

As in the ONE-TO-MANY example, the advantage of using the array is that the data step that rearranges
tha data would not change very much if there were more categories for the variable DRUGS. In example
10.8, there were three categories of drug use. If there had been ten categories, the data step would look
as follows.

data births2
array d(10);
retain d;
set births1;
by year;
if first.year then do j=1 to 10;;
 d(j)=0;
end;
d(drugs) = births;
if last.year then output
drop j;
run;

The data step is no longer than example 10.8 where there were three categories of drug use. PROC
TRANSPOSE can also be used to rearrange the data in data set BIRTHS1.

...Example 10.9...
proc transpose data=births1 out=births2; 1
var births; 2
id drugs; 3
by year; 4
run;

proc print data=births2;
run;

Obs year _NAME_ _1 _2 _3
 1 1993 births 269155 8430 4792 5
 2 1994 births 261746 12132 4067
 3 1995 births 250486 16812 3744
 4 1996 births 240699 18964 3948
 5 1997 births 231441 21679 3856
 6 1998 births 230911 23218 3619

Introduction to SAS®

Mike Zdeb (402-6479, msz03@albany.edu) #120

 7 1999 births 227689 24066 3392
 8 2000 births 225870 25141 3219
1 PROC TRANSPOSE is used to rearrange the data in data set BIRTHS1 to create data set BRTHS2.
2 The VAR statement specifies the variable whose values will appear in the new data set.
3 The ID statement specifies the variable that controls the variable that will contain the value of the

variable in the VAR statement.
4 The BY variable specifies the variable that controls the observation into which variables are placed.
5 The output from PROC PRINT shows that the data set BIRTHS2 needs new variable names, and that

a new variable _NAME_ was added to the data set.

By default, PROC TRANSPOSE uses an underscore plus the values of the ID variable as a suffix to
create the variable names in the output data set. A PROC TRANSPOSE option and a data set option
can be to alter the content of data set BIRTHS2.

...Example 10.10...
proc transpose data=births1 out=births2 (drop=_name_) prefix=d; 1
var births;
id drugs;
by year;
run;

proc print data=births2;
run;

Obs year d1 d2 d3
 1 1993 269155 8430 4792 2
 2 1994 261746 12132 4067
 3 1995 250486 16812 3744
 4 1996 240699 18964 3948
 5 1997 231441 21679 3856
 6 1998 230911 23218 3619
 7 1999 227689 24066 3392
 8 2000 225870 25141 3219

1 A data set option is used to drop the variable _NAME_ from the data set BIRTHS2. The PREFIX=
option replaces the default prefix on an underscore with a D.

2 The data set is exactly what is desired, correct variable names and no extra variables.

