An Introduction to Reshaping (TRANSPOSE) and

Combining (MATCH-MERGE) SAS® Data Sets
Mike Zdeb, University@Albany School of Public Health, Rensselaer, NY

ABSTRACT

SAS offers many ways to analyze and present data. However, since data may not be stored in a format required for a
particular analysis and/or mode of presentation, another set of SAS tools that reorganize data must be used first --- those that
reshape (turn variables into observations and vice-versa) and those that combine data sets. Just as one can select among a
number of ways to analyze and present data, reshaping and combining of data sets may be done in several different ways.
This paper focuses on the use of PROC TRANSPOSE to reshape data sets and data step match-merge to combine data
sets. The effects of using various PROC TRANSPOSE options and statements are illustrated as are various types of match-
merge situations (one-to-one, one-to-many, many-to-many) and how to control the results of match-merge using the IN= data
set option. Alternative methods are briefly discussed: using arrays to reshape data; using PROC SQL to combine data sets.

INTRODUCTION

One of the many strengths of SAS software is the number of tools is offers for data organization, or perhaps reorganization s
a better term. Prior to using any of the SAS procedures for data analysis or the ODS tools for data presentation, it is not
uncommon to spend a lot of time and effort putting data in a form that make it amenable to analysis and presentation.
Sometimes, if you want to conduct an analysis across observations in a data set, you can use SAS procedures. Or, if you
want to conduct an analysis within observations, you can use SAS functions. However, there are occasions when neither a
procedure nor a function will suffice. Your data may be arranged in such a way that the only way to complete a given task is
to first rearrange the data set. Rearranging in this context means converting variables into observations or observations into
variables. Both types of rearranging can be accomplished with PROC TRANSPOSE.

Another common situation is to have data in multiple data sets. Analysis and/or presentation of the data might require that all
the data sets be combined. Combination of two or more data sets might mean simply concatenating the observations by
means of a SET statement or PROC APPEND. However, sometimes it involves combining the information in observations
with information in observations in another data set by using a MERGE statement rather than SET.

The following examples illustrate first how to rearrange data sets and then how to combine data sets. Rearranging is
accomplished with PROC TRANSPOSE while combining is done with data step match-merges.

REARRANGING DATA SETS

Problem #1...you have SAS data set with observations that contain up to five occurrences of a 3-digit medical diagnosis.
Each observation represents one person and your task is to create a table that shows how often each diagnosis occurs within
the data set. The following data step creates the data set to be used in the examples.

* EXAMPLE 1;

data many_dx;

infile datalines missover;
input id : $2. (dx1-dx5)(:$3.);
datalines;

01 647 641 650 428

02 428 416

03 642 674 648

04 641 416 648 647 641

run;

One approach is to use PROC FREQ on each of the five diagnoses and add the results of the five tables...

proc freq data=many_dx;
tables dx1-dx5;
run;

Another approach is to rearrange the data creating a new data set that contains only one variable, DIAG, with one
observation for each diagnosis in the original data set. You create one observation for each diagnosis in the original data set.

* EXAMPLE 2;
data all_dx;
set many_dx;

diag = dx1; if diag ne " " then output; @
diag = dx2; if diag ne " " then output;
diag = dx3; if diag ne " " then output;
diag = dx4; if diag ne = " then output;
diag = dx5; if diag ne " " then output;
keep diag; @

run;

A new variable DIAG is added to the data set. Every time an observation is read with a SET statement, the value of each of
the five diagnoses (DX1 through DX5) is placed in the variable DIAG. If the value is non-missing, an observation is added to
the data set. Each observation in the original data set can contribute up to five observations to the new data set. Only the
variable diag is kept in the new data set.

Obs diag
1 647
2 641
3 650
4 428
5 428
6 416
7 642
8 674
9 648

10 641
11 416
12 648
13 647
14 641

You can then use PROC FREQ to create a table of one variable DIAG that represents all the diagnoses in the original data
set.

proc freq data=all_dx;
table diag;
run;

The above data step turned variables into observations. That is one of the functions of PROC TRANSPOSE. Rather than
use a data step, use PROC TRANSPOSE to rearrange the data.

* EXAMPLE 3;

proc transpose data=many_dx out=all_dx; @
var dxl1-dx5; @

run;

The data set to be rearranged is specified after DATA= while the data set to be created is specified after OUT= @. If you do
not specify a name for the new data set, SAS will provide a name for the data set with the form DATAL, DATA2, etc. The
variables to be transposed are specified in a VAR statement @. If no VAR statement is used, PROC TRANSPOSE will use all
the numeric variables in the DATA= data set. In this example, since all the variables are character, without a VAR statement,
PROC TRANSPOSE will create a new data set with zero observations and five variables (one variable for each observation in
the DATA= data set. Since there was a VAR statement, PROC TRANSPOSE produced the following...

Obs _NAME_ CcoL1 coL2 CoL3 coL4
1 dx1 647 428 642 641
2 dx2 641 416 674 416
3 dx3 650 648 648
4 dx4 428 647
5 dx5 641

PROC TRANSPOSE turned the variables DX1through DX5 into observations. However, rather than producing a data set with
only one variable as was done in example 2, there are five variables. There is a variable _NAME__ that contains the names of
the transposed variables followed by one new variable with the prefix COL for each observation in the original data set. If

there had been 1,000 observations in data set MANY_DX, data set ALL_DX would have 1,001 variables with the names
NAME and COL1 through COL1000. The prefix COL is the default prefix assigned by PROC TRANSPOSE

There may be occasions when the data set that results from example 3 is exactly what you want. That is not the case here
since we want a data set with only one variable that contains all the values of the diagnoses. That can be accomplished by
adding another statement to PROC TRANSPOSE.

* EXAMPLE 4;

proc transpose data=many_dx out=all_dx;
var dx1-dx5;

by id; @

run;

A BY statement is added, specifying ID as the by-variable @. As with other instances of using by-variables in SAS, the
DATA= data set must be sorted (or indexed) in ascending order of the by-variable (note: there is one instance in SAS where
this is not true...do you know when that occurs?). The new data set looks as follows...

Obs id _NAME_ cOL1
1 01 dx1 647
2 o1 dx2 641
3 o1 dx3 650
4 o1 dx4 428
5 01 dx5
6 02 dx1 428
7 02 dx2 416
8 02 dx3
9 02 dx4

10 02 dx5

11 03 dx1 642
12 03 dx2 674
13 03 dx3 648
14 03 dx4

15 03 dx5

16 04 dx1 641
17 04 dx2 416
18 04 dx3 648
19 04 dx4 647
20 04 dx5 641

Variables are converted to observations within by-groups. Since there is only one observation in each by-group, there are
now five observations per observation in the original data and only one variable with the prefix COL. This new data set is very
close to the target data set. As with the results from example 3, this may be the desired output. But, a few data set options
can be added to PROC TRANSPOSE and the data set will look identical to that produced by the data step in example 4.

* EXAMPLE 5;
proc transpose data=many_dx
out=all_dx (keep=coll @ rename=(coll=diag) ® where=(diag ne "") ©);
var dx1-dx5;
by id;
run;

The only variable we want in the new data set is COL1 @. That variable is renamed to DIAG @. Only observations with non-
missing values for DIAG are output to the new data set ®. The order of the KEEP, RENAME, and WHERE data set options
does not matter. Regardless on the order, SAS processes the KEEP option first so you must keep the variable COL1(the
default name assigned by PROC TRANSPOSE). The RENAME option is processed prior to the WHERE option so you must
use the new variable name in the WHERE option.

-3-

Obs diag
1 647
2 641
3 650
4 428
5 428
6 416
7 642
8 674
9 648

10 641
11 416
12 648
13 647
14 641

The data set produced by PROC TRANSPOSE in example 5 is now identical to that produced with a data step in example 2.
There are a few other options available in PROC TRANSPOSE, but in the situation where you want to create a new data set
with observations based on variables in the original data set, the above examples show most of the options (both PROC and
data set) that are important.

The data step in example 1 could be rewritten creating a data set with all numeric rather than character variables.

* EXAMPLE 6;

data many_dx;

infile datalines missover;
input Id dx1-dx5;
datalines;

01 647 641 650 428

02 428 416

03 642 674 648

04 641 416 648 647 641

run;

As stated earlier, the default behavior of PROC TRANSPOSE is to use all numeric variables in a data set. If you use PROC
TRANSPOSE with no VAR statement and the data set from example 6...

* EXAMPLE 7;
proc transpose data=many_dx out=all_dx;
run;

the new data set is similar to that produced in example 3, except that there is an additional observation based on the values
of the variable ID in the original data. Also, the variables COL1-COL4 in the new data set are numeric rather than character
as they were in example 3.

Obs _NAME_ CcoL1 coL2 CoL3 coL4
1 id 1 2 3 4
2 dx1 647 428 642 641
3 dx2 641 416 674 416
4 dx3 650 - 648 648
5 dx4 428 - - 647
6 dx5 - - - 641

Problem #2...you have a SAS data set with observations that contain an account number, a month (in the form of 1 for
January, 2 for February, etc.), and a dollar value indicating the amount deposit in money market account. You would like to
create a report showing the monthly deposits for each person in your data set (as indicated by the account number). You
think that it would be easier to create the report if the data set had one observation per person with all the deposits in that
observation. The following data step creates the data set used in the examples.

4-

* EXAMPLE 8;

data deposits;

input account : $2. month deposit @@;

datalines;

01 1 100 01 4 50 01 6 200

02 2 50 02 3 100

03 150 03250 0335003450 03550 03650

run;

As was done in the last problem, you could use a data step to rearrange the data. However, the data step to put all the data
for into a single observation per person is mor complex than in the last problem, requiring the use of FIRST. and LAST.
variables. PROC TRANSPOSE will be used without even showing such a data step.

* EXAMPLE 9;
proc transpose data=deposits out=acct_deposits; @
run;

PROC TRANSPOSE is used without any extra statements @. Only the input and output data set names are specified.
Without a VAR statement, the two numeric variables in the original data set (MONTH, DEPOSIT) are transposed.

Obs _NAME_ coL1 coL2 coL3 coL4 COL5 COL6 coL7 coLs coL9 COL10 CoL11
1 month 1 4 6 2 3 1 2 3 4 5 6
2 deposit 100 50 200 50 100 50 50 50 50 50 50

The new data set has one observation for each transposed variable and twelve variables, one for each observation in the
original data plus the variable _"NAME_. The data are rearranged, but not in the form of one observation per person. That
can be accomplished by adding another statement to PROC TRANSPOSE.

* EXAMPLE 10;

proc transpose data=deposits out=acct_deposits;
by account;

run;

A BY statement rearranges the data one person at a time rather than rearranging all the data at one time. The DATA= data
set must be sorted (or indexed) in ascending order by the variable ACCOUNT. Adding the BY statement results in a data set
that has two observations per person since there are two numeric variables in the original data.

Obs account _NAME_ coL1 coL2 CoL3 coL4 CoL5 COL6
1 01 month 1 4 6 . . .
2 o1 deposit 100 50 200
3 02 month 2 3 .

4 02 deposit 50 100
5 03 month 1 2 3 4 5 6
6 03 deposit 50 50 50 50 50 50

A few more changes are needed.

* EXAMPLE 11;

proc transpose data=deposits out=acct_deposits (drop=_name_ @) prefix=dep; @
var deposit; ©

by account;

run;

The variable _NAME_is dropped from the OUT= data set @. The default variable names COL1 through COL6 are replaced
with DEP1 through DEPS6 through use of a PREFIX option @®. Notice that the text following PREFIX= is not in quotes even
though it is not the name of a variable. Rather, it is text meant to replace the prefix COL in the names of the variables in the
new data set. Adding the VAR statement limits the transposed variables to DEPOSIT ©.

Obs account depl dep2 dep3 dep4 dep5 dep6

1 01 100 50 200 - - -
2 02 50 100 - - - -
3 03 50 50 50 50 50 50

Notice that you did not have to tell PROC TRANSPOSE how many new variables (DEP1-DEP6) are needed to accommodate
the largest number of deposits for a particular person. As stated earlier in this problem, you could have used a data step. If
you did, you would have had to have know that six new variables were needed prior to writing that data step. Notice that
within observations 1 and 2, the values of DEPOSIT in the original data set are used to fill the values of DEP1 through DEP6
starting with DEP1. In the original data set, there was a variable MONTH than indicated the month of deposit. The deposits
for the first person were made in months 1, 4, and 6. For the second person, deposits were made in months 2 and 3. If you
want the numeric suffix on the variables DEP1-DEPS6 to indicate the month of deposit, you can use a ID statement.

* EXAMPLE 12;

proc transpose data=deposits out=acct_deposits (drop=_name_) prefix=dep;
var deposit;

by account;

id month; @

run;

The variable MONTH is used as an ID variable @ telling PROC TRANSPOSE to create the suffix on the variable names
DEP1-DEP6 based on the value of the variable MONTH. Note, you can think of this task as filling a spreadsheet using the
data from data set DEPOSITS: the ID statement uses a variable that controls what column is filled; the BY statement uses a
variable what row is filled; the VAR statement specifies the variable whose value is used to fill the cell in the spreadsheet.

Obs account depl dep2 dep3 dep4 dep5 dep6

1 01 100 - - 50 - 200
2 02 - 50 100 - - -
3 03 50 50 50 50 50 50

What if the original data had text strings for the values of month rather than numbers? Month would then have to be a
character variable.

* EXAMPLE 13;

data deposits;

input account : $2. month : $3. deposit @@;

datalines;

01 JAN 100 01 APR 50 01 JuUN 200

02 FEB 50 02 MAR 100

03 JAN 50 03 FEB 50 03 MAR 50 03 APR 50 03 MAY 50 03 JUN 50

run;

When an ID variable is specified, PROC TRANSPOSE tries to use the value of that variable to create the names of variables
in the new data set. If the values are numeric (as in the data set created in example 8), PROC TRANSPOSE uses an
underscore as the default prefix. If no PREFIX option had been use in example 12, the names of the new variables would
have been _1 through _6, not DEP1 through DEP6. When the values of the ID variable are text strings , PROC TRANSPOSE
uses that text to name the new variables. If the text contains characters not allowed in SAS variable names, those characters
are replaced with underscores.

* EXAMPLE 14;

proc transpose data=deposits out=acct_deposits (drop=_name_); @
var deposit;

by account;

id month; @

run;

No PREFIX option is used. Since the values of the variable MONTH are the first three characters of the names of the
months, PROC TRANSPOSE uses those values to create the names of the variables in the new data set.

Obs account JAN FEB MAR APR MAY JUN

1 01 100 - - 50 - 200
2 02 - 50 100 - - -
3 03 50 50 50 50 50 50

Other PROC TRANSPOSE Options and Statements

There are several other PROC TRANSPOSE options and statements that are not covered in the examples. The options are
LET, LABEL, and NAME. The statements are COPY and IDLABEL. You can read about these options and statements in the
SAS on-line help. The most important and frequently used options are covered in the examples.

Rearranging Data Sets with Arrays
Example 2 showed a data step alternative to PROC TRANSPOSE for rearranging data. There is another version of a data
step alternative and it involves the use of an array.

* EXAMPLE 15;
data all_dx;
set many_dx;
array dx(5); O
do j=1 to 5; ®
diag=dx(j); ©
if diag ne " " then output; @
end;
keep diag;
run;

An ARRAY statement creates an array name DX (based on the values DX1-DX5 in the data set MANY_DX) @. A DO loop is
used to look at the five diagnoses within each observation ®. The variable DIAG is created based on the value of DX1
through DX5 @©. If DIAG is non-missing, an observation is written to data set ALL_DX @.

Examples 9 through 12 showed how to use PROC TRANSPOSE to rearrange a data set that had one observation for variouis
combinations of account number and month. The new data set had one observation per account. Once again, you can do
the same rearranging uisng an array.

* EXAMPLE 16;

data acct_deposits;

retain depl-dep6; ©

set deposits;

by account; @

array dep(6); ©

if first.account then do j=1 to 6; @
dep(d) = -.;

end;

dep(month) = deposit; ®

if last.account then output; @

keep account depl-dep6;

run;

A RETAIN statement is necessary since observations are built as the data step reads observations within a given account
number @. No observation is written to the new data set until after the last observation within an account number is read.
Without the RETAIN statement, values of DEP1-DEP6 that are created for each account number would be set to missing in
each cycle of the data step. The DEPOSITS data set is read by account, creating FIRST.ACCOUNT and LAST.ACCOUNT
variables for use within the data step @. The array DEP is created to hold the values of the variable DEPOSIT in the original
data set ®. The values of DEP1-DEPS6 are initialized as missing at the start of each by-group @. The value of the variable
MONTH is used to place the value of the variable DEPOSIT in the appropriate DEP variable (1 through 6) ©. After the last
observation within a by-group has been read, an observation is written to the new data set ®. As opposed to when PROC
TRANSPOSE was used to rearrange the same data as used in example 16, you must know how many new variables to
create prior to writing the data step, in this case DEP1-DEP6. PROC TRANSPOSE makes that determination for you.

The data step plus an array approach to rearranging data used in examples 15 and 16 does have some advantage over
PROC TRANSPOSE in that it is more flexible. If the data used in example 16 had contained both a DEPOSIT and
WITHDRAWAL and you wanted to create a new data set with DEP1-DEP6 and WDR1-WRD6, you could not do that with a
single use of PROC TRANSPOSE. However, that would be an easy task with one data step plus arrays. If the data used in
example 15 contained both DX1-DX5 and PR1-PR5 (5 diagnoses and 5 procedures) in each observation and you wanted to
create a new data set with only two variables, DIAG and PRO, you could not do that with a single use of PROC TRANSPOSE.
Again, that is an esay task for a single data step and arrays.

COMBINING DATA SETS
There are a number of ways to combine SAS data sets.

B concatenate - stack data sets with a SET statement (place one after another)

B interleave - stack data sets with a SET statement, but form the result In order by one or more variables present in the
data sets through use of a BY statement

B PROC APPEND - stack data sets (place one after another)
NOTE: both concatenation, interleaving, and PROC APPEND result in a data set that has as many observations as the
sum of all the observations in the data sets being combined

B one-to-one merge - use a MERGE statement to combine observation one in data set one with observation one in data set
two, observation two-with-two, three-with-three, etc.
NOTE: the data set resulting from one-to-one merge will have as many observations as the number of observations in
the largest data set involved in the merge

B matched-merge - use a MERGE statement and a BY statement to combine observations in data sets based upon the
value of one or more variables
NOTE: the number of observations in the resulting data set depends on the content of the data sets being combined and
on the matching options being used

m UPDATE/MODIFY - change the values of the variables in certain observations in a data set based upon the values of
variables in another data set (in case you could not answer the question posed after example 4, when a by-variable is
used with a MODIFY statement, data sets need not be sorted or indexed according t values of the by-variable)
NOTE: as with matched-merge, the number of observations in the resulting data set depends upon the content of the
data sets being combined and on the matching options being used

B PROC SQL - either stack or combine observations

Only match-merge is discussed in the following examples, with a mention of PROC SQL as an alternative in some situations
when a match-merge will not work properly

Problem #1...you have two SAS data sets, one with information collected on individuals in the month of January, the other
with similar information collected in February. You want to create a new data set with one observation per person that
contains all the information from both months. Each data set contains a weight for each person and once the data sets are
combined, you want to compute the weight change from January to February. The following data step creates the data sets
use in the examples.

* EXAMPLE 1;

data jan;

input ssn weight zip : $5.; ©
format ssn ssn.; @

datalines;

001001234 180 12203 ©
123456789 150 13502

888888888 200 14001

987654321 120 12345

run;

data feb;

input ssn weight;
datalines;
001001234 160 ©
123456789 145
987654321 125
999999999 150

run;

There are a few differences between the two data sets: data set JAN contains an extra variable, ZIP @; the variable SSN is
formatted in data set JAN @; there are three people common to both data sets and one unique to each data set. A match-
merge requires that each data set contain a variable common to all data sets mentioned in the MERGE statement. In these
data sets, that variable is SSN. The variable must have the same type in the data sets and should also have the same length,
though you can match-merge data sets based on the values of variables with different lengths (not advised). A new data set
is created with a match-merge. There is only one occurrence of the values of the by-variable SSN in each data set to be
merged. This is know as a one-to-one match-merge.

8-

* EXAMPLE 2;
data jan_feb;
merge jan feb; @
by ssn; &

run;

The two data sets are combined using a MERGE statement @. Use of a BY statement makes this a match-merge rather than
a simple merge and forces observations to be combined based on the value of the by-variable SSN ®. Data set JAN_FEB
contains the following observations...

Obs ssn weight zip
1 001-00-1234 160 12203
2 123-45-6789 145 13502
3 888-88-8888 200 14001
4 987-65-4321 125 12345
5 999-99-9999 150

The default behavior of a match-merge is: the combined data set contains all matched observations, plus all unmatched
observations from all data sets in the MERGE statement; the combined data set contains all variables common to all data
sets in the MERGE Statement, plus all variables unique to each data set in the MERGE statement . You can see the
common variables SSN and WEIGHT and the variable ZIP that unique to data set JAN. Also, you can see that observation
#5 is unmatched since it has no value for ZIP (that only occurs in data set JAN), but it is hard to see that observation #3 is
also unmatched since it has values for all variables. For the matched observations (#s 1, 2, and 4) the value of the variable
WEIGHT is taken from data set FEB. The default behavior for a match-merge (or simple merge) is that when variables are
common to merged data sets, the combined data set will have the value from the data set that occurs last in the MERGE
statement. Also notice that though the variable SSN was formatted only in data set JAN, it is also formatted in the combined
data set JAN_FEB.

The MERGENOBY option can be set to issue a warning or the stop a match-merge if you forget to se a BY statement. The
default setting of MERGENOBY is NOWARN. The two other possible settings are WARN and ERROR.

* EXAMPLE 3;
options mergenoby=error; @

data jan_feb;
merge jan feb; @
run;

An options statement is used to stop a merge is no BY statement is present @. No BY statement is used for the merge of
data sets JAN and FEB @. The LOG contains the following...

ERROR: No BY statement was specified for a MERGE statement.
NOTE: The SAS System stopped processing this step because of errors.

When merged data sets contain variables that have identical names, a RENAME data set option can be used to preserve the
values of the variables in the merged data sets. Otherwise, matched observations contain the value of the variable in the dat
set mentioned last in the merge statement (as shown in the results of example 2).

* EXAMPLE 4;

data jan_feb;

merge jan (rename=(weight=wtl)) feb (rename=(weight=wt2)); @
by ssn;

diff = wt2 - wtl; @

run;

The goal of merging the data sets was to compute the weight change from January to February. The variable WEIGHT is
renamed using data set options in the MERGE statement @. The difference in weight is calculated.

Obs ssn wtl zip wt2 diff
1 001-00-1234 180 12203 160 -20
2 123-45-6789 150 13502 145 -5
3 888-88-8888 200 14001 - -
4 987-65-4321 120 12345 125 5
5 999-99-9999 - 150 -

It is now easy the matched versus unmatched observations. As stated previously, the default behavior of a match-merge is to
create a data set with all matched and unmatched observations. This default behavior can be changed using IN= data set
options.

* EXAMPLE 5;

data jan_feb;

merge jan (in=j rename=(weight=wtl)) o
feb (in=F rename=(weight=wt2));

by ssn;

if jand f; @

diff = wt2 - wtl;

run;

In addition to the RENAME data set option, an IN data set option is use @. The IN data set option creates a new variable that
exists only for the duration of the data step. The name assigned to the variable (after IN=) must conform to the rules for
naming variables in SAS. The variable takes on either of two values, 0 or 1. If the data set contributed any information to the
observation currently being created by the data step, the value of the variable is 1, otherwise it is 0. When performing a
match-merge, the observation being created on each pass through the data step in example 5 will have information
contributed by both data set JAN and FEB if there is a match based on the values of the by-variable SSN. This condition is
checked in the subsetting IF statement @. The statement...

if j and T;
is equivalent to the statement...
if Jeqland Feq 1;

Either statement is true only when both data set JAN and data set FEB have contributed information to the an observation
and only matched observations are added to the data set JAN_FEB.

Obs ssn wtl zip wt2 diff
1 001-00-1234 180 12203 160 -20
2 123-45-6789 150 13502 145 -5
3 987-65-4321 120 12345 125 5

The data step can be modified to create three data set: one with matched observations; one with unmatched observations
from data set JAN; one with unmatched observations from data set FEB. Once again, this is accomplishes using the IN data
set option.

* EXAMPLE 6;

data jan_feb only_jan only_feb; @

merge jan (in=j rename=(weight=wtl))
feb (in=f rename=(weight=wt2));

by ssn;

diff = wt2 - wtl;

if j and f then output jan feb; @

else
if j then output only_jan;
else output only_feb;
run;

Three data sets are to be created with the data step @. An IF-THEN-ELSE statement checks the values of the IN data set
option variables and directs observations to the appropriate data set. Notice that the position of the statement that computes
the difference in weights is in a different position in example 6 than it was in example 5. Do you know why it was moved?

-10-

Problem #2...you have two SAS data sets. One has demographic data on a group of individuals. The other has medical
data. You want to create a single data set containing the demographic and medical data for each a single observation. The
following data step creates the data sets use in the examples.

* EXAMPLE 7;

data demographic;

input name : $5. age zip : $5.; ©
datalines;

ADAMS 20 12203

BROWN 21 10001

SMITH 50 12005

SMITH 33 12012

run;

data medical;
input name : $5. age hr chol ; @

label
hr = "heart rate”
chol = "cholesterol”

datalines;

ADAMS 20 89 200
BROWN 21 60 140
SMITH 34 71 150

run;

A variable that is common to both data set is NAME @ @. Notice that there are repeated values of the variable NAME in the
DEMOGRAPHIC data set, there are two people named SMITH. If these two data sets are combined with a match-merge
using NAME as the by-variable, this is known as a many-to-one (or one-to-many depending on the data set that appears
first in the merge statement) match-merge.

* EXAMPLE 8;

data both;

merge demographic medical;
by name;

run;

The many-to-one merge produces the following...

Obs name age zip hr chol
1 ADAMS 20 12203 89 200 ©
2 BROWN 21 10001 60 140
3 SMITH 34 12005 71 150 @
4 SMITH 33 12012 71 150

Both ADAMS and BROWN are one-to-one matches and each contributed one observation to data set BOTH @. However,
each SMITH in data set DEMOGRAPHIC was merged with the one SMITH in data set MEDICAL, producing two observations
in data set BOTH .

Notice that since the variable AGE has the same name in both data sets, the value of age in data set BOTH for most of the
observations comes from data set MEDICAL, the last data set mentioned in the MERGE statement. However, the age in the
last observation comes from data set DEMOGRAPHIC. Understanding why this happens for the last observation has to do
with how SAS forms observations when performing a match-merge with by-variables. After SAS merges the first SMITH in
data set DEMOGRAPHIC with the SMITH in data set MEDICAL, there are no more SMITHSs left in the MEDICAL data the next
time SAS checks to see if there are any more observations left in the current by-group, that is by-group SMITH. There is one
in data set DEMOGRAPHIC, so SAS reads that observation and the value of age from data set DEMOGRAPHIC replaces the
34 that was in place the last time SAS created a merged observation. There is no SMITH left in data set MEDICAL, so that
value remains in the new observation.

Another item to remember is that the values of all variables read with a MERGE statement are automatically retained (as with

a SET statement). If there is a BY statement in the data step (as there is with a match-merge), the values are only retained
as long as there are observations left in a by-group. They are set to missing once a new by-group is encountered.

-11-

Since the variable AGE is present in both the DEMOGRAPHIC and MEDICAL data sets, you can add a statement to the data
step that specifies to output only observations where the age in two data sets differs by one year or less.

* EXAMPLE 9;

data both;

merge demographic (rename=(age=agel)) medical (rename=(age=age2)); ©@
by name;

if abs(agel - age2) le 1; ®

run;

The variable AGE is renamed in both data sets @. The renamed variables are used is a subsetting IF statement @. The
difference between the two ages is calculated and the absolute value function (ABS) converts any negative value to positive.
If the two ages are within one year, an observation is output.

Obs NAME AGE1 ZIP AGE2 HR CHOL
1 ADAMS 20 12203 20 89 200
2 BROWN 21 10001 21 60 140
3 SMITH 33 12012 34 71 150 ©

The subsetting IF statement eliminated one of the SMITH matches and the one kept in the data set merged two observations
with ages within one year of each other @.

Problem #3...a problem identical to problem #2, except the data sets are larger. You have two SAS data sets. One has a
name and an age. The other has a name, an age, and a heart rate. You want to create a single data set containing the
name, age from both data sets, and the heart rate. The following data step creates the data sets use in the examples.

data datasetl;
input name $ age; @
datalines;

ADAMS 20
BROWN 21
BROWN 30
JONES 45
JONES 46
JONES 47

LAWRENCE 10
LAWRENCE 14
LAWRENCE 16

SMITH 50
WALTERS 29
run;

data dataset2;

input name $ age hr; @
label hr = "heart rate-;
datalines;

ADAMS 21 89
BROWN 15 60
BROWN 21 75
BROWN 40 80
JONES 48 60
KELLY 57 90

LAWRENCE 16 60
LAWRENCE 20 84

SMITH 30 71
SMITH 50 55
;‘un;

Once again, a variable that is common to both data set is NAME @ @. Notice that there are repeated values of the variable
NAME in the both data sets, not just one as in problem. If these two data sets are combined with a match-merge using
NAME as the by-variable, this is known as a many-to-many match-merge. The two data sets also contain observations that

-12-

will be used in one-to-one, one-to-many, and many-to-one match merges. There are also observations in both data sets
that will be unmatched. The SAS code from example 9 is used again.

* EXAMPLE 11;

data both;

merge

datasetl (rename=(age=agel))
dataset2 (rename=(age=age2))

E)y name;
if abs(agel - age2) le 1;
run;

and some of the matches that should be in the data set BOTH (for example BROWN who is 21 in DATASET1 with BROWN
who is 21 in DATASET?2) have not been output.

Obs NAME AGE1 AGE2 HR

1 ADAMS 20 21 89 O
2 JONES 47 48 60 @
3 KELLY - 57 90 ©
4 SMITH 50 50 55 O
5 WALTERS 29 - . ®

ADAMS is a one-to-one match @. JONES is a many-to-one match @. KELLY and WALTERS are unmatched, but are in data
set BOTH since the default result of a match-merge is to include all unmatched observations in the output data set ®. SMITH
is one-to-many match @. The only matches that should be in data set BOTH but are not are the many-to-many matches.
Eliminating the subsetting IF statement shows why the many-to-many matches are missing.

Obs NAME AGE1 AGE2 HR
1 ADAMS 20 21 89
2 BROWN 21 15 60 ©
3 BROWN 30 21 75
4 BROWN 30 40 80
5 JONES 45 48 60
6 JONES 46 48 60
7 JONES 47 48 60
8 KELLY - 57 90
9 LAWRENCE 10 16 60 @
10 LAWRENCE 14 20 84
11 LAWRENCE 16 20 84
12 SMITH 50 30 71
13 SMITH 50 50 55
14 WALTERS 29 - -

There is a 21 year old BROWN in both data sets that should match @. However, you can see in the above listing that the two
observations that should match never were matched in the many-to-many match merge. The same is true for the 16 year old
LAWRENCE in both data sets ®. Whenever you perform a many-to-many match merge, you will see the following NOTE in
the LOG...

NOTE: MERGE statement has more than one data set with repeats of BY values.

This is an indication that the data set produced by the match-merge may or may not be the one that should be produced
based on your SAS code. In example 11, it clearly was not. PROC SQL is an alternative to a match-merge that will properly
handle all matching situations.

* EXAMPLE 12;
proc sql; @
create table both as @
select datasetl.name, datasetl.age as agel, dataset2.age as age2, hr ©
from datasetl, dataset2 @
where datasetl._name eq dataset2.name and
abs(agel-age2) le 1; ©
quit; @

-13-

If you are new to PROC SQL, no data sets are specified when the procedure is invoked (though there a numerous options
that can be specified to control both the output and PROC SQL execution) and the procedure ends with a QUIT statement @.
SAS data sets created by PROC SQL are referred to as tables @. The variables to be included in the table (data set) are
specified in a SELECT clause ®. Notice that variable names are separated by commas, something that is not normally done
in SAS outside of PROC SQL. Also, in the data step match-merge, the problem of variable names common to two data sets
was handled using the RENAME data set option. In PROC SQL, you specify both the data set name and variable
concatenated by a period to distinguish between the variables with common names in the two data sets. A FROM clause
names the data sets that are to be joined (merged) @. Merely separating the data set names by a comma results in what is
referred to in PROC SQL as an inner-join. Finally, a WHERE clause specifies the rules for combining the data sets
mentioned in the FROM clause ®. PROC SQL code used in example 12 produces the following.

Obs NAME AGE1 AGE2 HR
1 ADAMS 20 21 89
2 BROWN 21 21 75
3 JONES 47 48 60
4 LAWRENCE 16 16 60
5 SMITH 50 50 55

Notice that all the matches are in the data set (one-to-one, one-to-many, many-to-one, many-to-many). The many-to-many
matches appear since PROC SQL merges observations differently from a match-merge. In theory, each observation in
DAASET1 'sees' each observation in DATASET?2 during the joining (merging) process. Once the observations are combined,
the conditions in the WHERE clause are checked to see if the observation should be kept. This process results in each
BROWN in DATASET1 'seeing' each BROWN in DATASET2 (same for LAWRENCE). This results in the 21 year old
BROWN (and 16 year old LAWRENCE) being output to data set BOTH. No unmatched observations are in the data set.
When an inner-join is performed in PROC SQL, only matched observations are output.

The type of join used in PROC SQL allows you to control the type of observations that are placed into the combined data set,
performing the same function as the IN= variables in a data step merge. If two data sets are being combined with PROC
SQL, different joins result in the following combined data sets.

TYPE OF JOIN OBSERVATIONS IN COMBINED DATA SET

inner only matched

full all matched plus all unmatched from both data sets

left all matched plus all unmatched from data set mentioned first
right all matched plus all unmatched from data set mentioned last

The FULL, LEFT, and RIGHT joins are known as OUTER joins and can only be used when combining two data sets. The
type of expression needed to create multiple data sets when using PROC SQL to combine data sets is not as straight forward
as the process of using IN= variables with a data set merge. If you want to put all the matched observations into one data
set and unmatched observations into another, you will have to learn a little more about PROC SQL.

REFERENCES (ALL HYPERLINKED)

The following papers published in the proceedings of various user group conferences contain more information on the topics
covered in this paper. They are by no means exhaustive of all the papers that are available on these topics, but the listed
papers will give you some more insight on both reshaping and combining data using SAS.

RESHAPING
Stuelpner, Janet. 2006. "The TRANPOSE Procedure or How to Turn It Around.” Proceedings of the Thirty-First Annual SAS
Users Group International Conference. San Francisco, CA.

Lavery, Russell. 2005. "An Animated Guide: Proc Transpose." Proceedings of the Eighteenth Annual Northeast SAS Users
Group. Portland, ME.

Whitlock, lan. 2000. "A Double Transpose." Proceedings of the Thirteenth Annual Northeast SAS Users Group.
Philadelphia, PA.

Virgile, Bob. 1999. "Changing the Shape of Your Data: PROC TRANSPOSE vs. Arrays." Proceedings of the Twenty-
Fourth Annual SAS Users Group International Conference. Miami Beach, FL.

-14-

http://www2.sas.com/proceedings/sugi31/234-31.pdf
http://www2.sas.com/proceedings/sugi24/Begtutor/p60-24.pdf
http://www.nesug.org/html/Proceedings/nesug05/how/how5.pdf
http://www.nesug.org/html/Proceedings/nesug00/cc/cc4023.pdf

COMBINING
Defoor, Jimmy. 2006. "Proc SQL — A Primer for SAS® Programmers." Proceedings of the Thirty-First Annual SAS Users
Group International Conference. San Francisco, CA.

(note...the above paper includes examples that compare data step merges with merging of data sets using PROC SQL)

Loren, Judy, and Gaudana, Sandeepl. 2005. "Join, Merge, or Lookup? Expanding Your Toolkit." Proceedings of the
Eighteenth Annual Northeast SAS Users Group. Portland, ME.

Schreier, Howard. 2005. "Let Your Data Power Your DATA Step: Making Effective Use of the SET, MERGE, UPDATE, and
MODIFY Statements." Proceedings of the Thirtieth Annual SAS Users Group International Conference. Philadelphia, PA.

Foley, Malachey. 2005. "MERGING vs. JOINING: Comparing the DATA Step with SQL." Proceedings of the Thirtieth Annual
SAS Users Group International Conference. Philadelphia, PA.

Virgile, Bob. 2003. "Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!" Proceedings of the Twenty-
Eight Annual SAS Users Group International Conference. Seattle, WA.

Foley, Malachey. 1997. "Advanced MATCH-MERGING: Techniques, Tricks, and Traps." Proceedings of the Twenty-Second
SAS Users Group International Conference. San Diego, CA.

ACKNOWLEDGMENTS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration. Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
The author can be contacted using e-mail... msz03@albany.edu

-15-

http://www2.sas.com/proceedings/sugi31/250-31.pdf
http://www2.sas.com/proceedings/sugi30/251-30.pdf
http://www2.sas.com/proceedings/sugi30/249-30.pdf
http://www2.sas.com/proceedings/sugi28/098-28.pdf
http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER39.PDF
mailto: msz03@albany.edu

