Matching the SDR to Publications in the 1980s: Experiences and Outcomes

Paula Stephan
Georgia State University and NBER
pstephan@gsu.edu
NSF
February 2008
A short history

- 1980 Alan Fechter, NSF program officer, made observation that U.S. scientific workforce was aging as a result of slowdowns in hiring.
- Between 1973 and 1987 median age of PhD scientists rose from 41 to over 44.
- If “science is a young person’s game,” this could have serious productivity effects
- Suggested need for an econometric study examining relationship between age and productivity
Age is, of course, a fever chill
That every physicist must fear.
He’s better dead than living still
When once he’s past his thirtieth year.
SDR was most appropriate data to use
But did not have publication data and no one had matched it to publication data
Had numerous meetings with NSF staffers
Wrote grant proposal(s)
Finally funded in 1983 by NSF, Sloan and Exon; encouraged our meeting Harriet Zuckerman and Coles
Sharon Levin co-PI and co-author
Publication Data

- Publication data for individuals in four fields of science came from ISI
 - Physics
 - Earth Sciences
 - Physiology
 - Biochemistry

- Match occurred at NRC, SDR contractor at time
 - 15,238 records in four fields during 1973-79
 - 9.6 entries in ISI Source Index
 - Matches made for two-year period; lag of one year; 1973 records linked with 1974 & 1975 ISI data, etc.
Use of data

- Data analysis occurred at the Green Building (NRC location)
- Or, on rare occasions, tapes were flown to St. Louis by an NRC employee and Sharon worked over a weekend.
Match Criteria

- Matching procedure was a variant of what was developed for Jones et al NRC report in 1983.
- Used last name, first and middle initial (when present) as well as address and information on coauthors.
- After match was completed, random samples were drawn and then actual publication was found to assess if match were correct.
What verification showed

- If first and middle initial match and zip matches reliability was extremely high
- Reliability began to decline if zip code was only at 3-digit level match
- Match was significantly more reliable if there was a middle initial than no middle initial
- Reliability could be increased in two latter cases by “cleaning” data, eliminating matches in which the publication appeared to be outside the journal set for a fine field. **Field of scientist taken from SDR.**
Reliability of match for “prolific” authors

- An unanticipated finding during verification was that match reliability appeared related to number of articles attributed to a scientist.
- Also realized that many prolific authors had a common last name (something that is also abundantly clear if one studies ISI’s list of most cited individuals).
- Checked reliability for “common” prolific authors.
What constitutes a common name?

- Used DRF; cumulative name frequency was generated from 1920-1985 DRF file.
- 770,624 individuals
- 38.32% of population have a last name and first initial that is unique
- Slightly more than 70% share last name and first initial with at most 10 other persons.
- 10% share a name with 50 or more
- 20% share a name with 20 or more
- 644 scientists share common last name, first initial.
Findings

<table>
<thead>
<tr>
<th>Distribution Location</th>
<th>N of Matches</th>
<th>N Correct</th>
<th>% Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 10 pubs; top 10 names</td>
<td>539</td>
<td>69</td>
<td>12.8</td>
</tr>
<tr>
<td>Top 10 pubs; top 20 names</td>
<td>314</td>
<td>99</td>
<td>31.6</td>
</tr>
<tr>
<td>Top 20 pubs; top 10 names</td>
<td>414</td>
<td>233</td>
<td>56.3</td>
</tr>
<tr>
<td>Top 20 pubs; top 30 names</td>
<td>130</td>
<td>93</td>
<td>71.5</td>
</tr>
<tr>
<td>Top 10 pubs; top 30 names</td>
<td>317</td>
<td>244</td>
<td>76.9</td>
</tr>
<tr>
<td>Top 20 pubs; Top 20 names</td>
<td>200</td>
<td>168</td>
<td>84.0</td>
</tr>
<tr>
<td>Top 10 pubs; Top 40 names</td>
<td>105</td>
<td>105</td>
<td>100.0</td>
</tr>
</tbody>
</table>
But . . .

- Eliminating matches for which there was zip code disagreement would have increased accuracy of prolific authors with common names to 75%. (first three rows).

- Good news because a real challenge for the current match is tremendous increase in common names because of ethnic distribution of U.S. PhDs awarded; need to include in a study rather than “throw away”
Controlled for age, vintage and time effects

Vintage effects created by surveys and interviews

Also controlled for age, time effects and fixed effects.

Found that with exception of particle physicists employed in PhD-granting departments, true aging effects are present in a fully specified model.

Vintage matters, but not in the sense that the “latest educated are best educated.”
Conclusions

1. For average PhD scientists age matters but it does not matter a great deal
2. Stronger relationship between age and ability to do path-breaking work.
Findings

- Published in *American Economic Review, Social Studies of Science, and others*
- Book: *Striking the Mother Lode in Science*
- Data was basis for another study that focused on gender funded by NSF.
- Study was easier to get funded but harder to get access to the data. Took approximately a year to work out arrangement to use the data matched for earlier study.
Comments/Questions

- pstephan@gsu.edu