Math 520A Problem Set 2 Spring 2010

We first study some subgroups of $\text{Gl}_2(\mathbb{Z}_3)$.

1. Let
 \[H = \{ \pm I_2 \} \cup \{ A \in \text{Gl}_2(\mathbb{Z}_3) : \det(A) = 1, \ \text{tr}(A) = 0 \} \].
 a) What are the orders of the elements of H?
 b) Construct a 1-1 homomorphism $f : Q_8 \to \text{Gl}_2(\mathbb{Z}_3)$ with image H, where Q_8 is the quaternionic group of order 8. Deduce that H is a subgroup of $\text{Gl}_2(\mathbb{Z}_3)$ isomorphic to Q_8.
 c) Show that $H \triangleleft \text{Gl}_2(\mathbb{Z}_3)$.
 d) Show the group $\text{Gl}_2(\mathbb{Z}_3)/H$ is not abelian.

2. Find a subgroup L of $\text{Gl}_2(\mathbb{Z}_3)$ of order 16 containing H. What are the orders of its elements?

3. Show that D_8 embeds in L.

Now we study subgroups of S_4.

4. Let
 \[H = \{ e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \} \subset A_4 \]
 a) Show that $H \triangleleft S_4$.
 b) Show that $S_4/H \cong S_3$.
 c) Find a subgroup K of order 8 in S_4 containing H, and construct an isomorphism from a familiar group of order 8 to K.

5. Show that A_4 has no subgroup of order 6. Deduce that A_4 is the only subgroup of S_4 of order 12.