1. Suppose \(V \) is the invariant direct sum of \(W \) and \(Z \), so that the map
\[
\iota : W \oplus Z \to V
\]
\[
(w, z) \mapsto w + z
\]
is an isomorphism. Let \(\mathcal{B} = v_1, \ldots, v_n \) be a basis of \(V \) such that \(v_1, \ldots, v_k \) is a basis of \(W \). It does not then follow that \(v_{k+1}, \ldots, v_n \) is a basis of \(Z \).

For instance, let \(A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \) and \(T = T_A \). Then we may take \(W = \text{Span}(e_1) \) and \(Z = \text{Span}(e_2) \). But we could choose \(\mathcal{B} = v_1, v_2 \) with \(v_1 = e_1, v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \). Then \(v_1 \) is in fact a basis of \(W \), but \(v_2 \) does not lie in \(Z \), and, in fact, \(\text{Span}(v_2) \) is not \(T \)-invariant. Note that for this choice of \(T \) and this choice of \(\mathcal{B} \), we have
\[
[T]_\mathcal{B} = \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix},
\]
so this is not a correct basis to obtain the desired form from our matrix.

What you need to show here is that if \(V \) is the invariant direct sum of \(W \) and \(Z \) and if \(w_1, \ldots, w_k \) and \(z_1, \ldots, z_\ell \) of \(W \) and \(Z \), respectively, then \(w_1, \ldots, w_k, z_1, \ldots, z_\ell \) is a basis of \(V \).

2. On 1b), it is tempting to find a right inverse \(B \) for \(A \) (i.e., \(AB = I_n \)), which exists as \(T_A \) is onto, and then deduce \(A \) is invertible. The common argument for that deduction would use Gauss elimination. But our assumption here is that \(R \) is a commutative ring, not a field. So Gauss elimination can't be used.

The argument to use here is as follows: Since \(T_A \) is an isomorphism, its inverse function, \(T_A^{-1} \) is linear, and hence has the form \(T_B \) for some \(n \times n \) matrix \(B \). We get
\[
I_n = T_B T_A = T_{BA} \quad \text{so} \quad BA = I_n.
\]
\[
I_n = T_A T_B = T_{AB} \quad \text{so} \quad AB = I_n.
\]