1. Let $B = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$. Define $T : \mathbb{Q}^{2 \times 2} \rightarrow \mathbb{Q}^{2 \times 2}$ by $T(A) = BA$. Give bases for the kernel and range of T.

Solution: Conceptually, $BA = 0$ if the range of A is contained in the kernel of B. B reduces to $\begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$, so the kernel of B is $\text{Span}([-3, 1])$.

The range of A is the span of its columns. Thus, A is in $\text{ker} T$ if each of its columns is in $\text{Span}([[-3], [-1]])$, i.e., if $A = \begin{bmatrix} a(-3) & b(-3) \\ a(1) & b(1) \end{bmatrix}$ for some $a, b \in \mathbb{Q}$.

We can also derive this directly, without discussing the range of A and the kernel of B: If $A = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$, then

$$BA = \begin{bmatrix} x + 3z & y + 3w \\ 2(x + 3z) & 2(y + 3w) \end{bmatrix},$$

so $A \in \text{ker} T$ if and only if $x + 3z = 0$ and $y + 3w = 0$, i.e., if and only if $x = -3z$ and $y = -3w$. But then $\begin{bmatrix} x \\ z \end{bmatrix} = z \cdot \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} y \\ w \end{bmatrix} = w \cdot \begin{bmatrix} -3 \end{bmatrix}$.

Thus, the elements of $\text{ker} T$ are linear combinations of $A_1 = \begin{bmatrix} -3 & 0 \\ 1 & 0 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 0 & -3 \\ 0 & 1 \end{bmatrix}$. The matrices A_1 and A_2 are linearly independent, as $aA_1 + bA_2 = \begin{bmatrix} a(-3) & b(-3) \\ a(1) & b(1) \end{bmatrix}$. If this is 0, then $-3a = 0$ and $-3b = 0$, so $a = b = 0$.

Thus, A_1 and A_2 form a basis for $\text{ker} T$.

For the range of T, we can again use the calculation that if $A = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$, then

$$BA = \begin{bmatrix} x + 3z & y + 3w \\ 2(x + 3z) & 2(y + 3w) \end{bmatrix}
= \begin{bmatrix} a \cdot 1 & b \cdot 1 \\ a \cdot 2 & b \cdot 2 \end{bmatrix},$$

where $a = x + 3z$ and $b = y + 3w$. Since x, y, z, w are arbitrary, so are a and b, so the range of T is $\text{Span}([1, 0], [0, 1])$. As above, these two matrices are linearly independent, and hence form a basis for the range of T.

Midterm Solutions

2. Let \(t_1, \ldots, t_k \in F \) be distinct. Let \(p(x) = (x - t_1) \ldots (x - t_k) \). Let \(A \in F^{n \times n} \) with \(p(A) = 0 \), i.e., \((A - t_1 I_n) \ldots (A - t_k I_n) = 0\).

Let \(P_1(x), \ldots, P_k(x) \) be the Lagrange polynomials for \(t_1, \ldots, t_k \), i.e.,

\[
P_i(x) = \frac{\prod_{j \neq i} (x - t_j)}{\prod_{j \neq i} (t_i - t_j)}.
\]

Let \(B_i = P_i(A) = \prod_{j \neq i} (A - t_j I_n) \). Show the following:

a) \(B_1 + \cdots + B_k = I_n \).
b) \(B_i B_j = 0 \) for \(i \neq j \).
c) \(B_i^2 = B_i \) for all \(i \).
d) \(t_1 B_1 + \cdots + t_k B_k = A \).

(Hint: What are \(P_1(x) + \cdots + P_k(x) \) and \(t_1 P_1(x) + \cdots + t_k P_k(x) \)?)

Solution: We first solve the hint. Recall that if \(f \) is a polynomial of degree less than \(k \), then formula (4-14) in section 4.3 gives:

\[
f = f(t_i) P_1 + \cdots + f(t_k) P_k.
\]

Apply this first to \(f = 1 \). Since \(f \) is a the constant function whose value is 1 on every point, we see that \(1 = P_1 + \cdots + P_k \). Now \(1(A) = I_n \), so

\[
I_n = P_1(A) + \cdots + P_k(A) = B_1 + \cdots + B_k,
\]

so a) is true.

Next, we apply the same formula to \(f = x \). Evaluating \(x \) at \(t_i \) gives \(t_i \), so \(x = t_1 P_1 + \cdots + t_k P_k \). Evaluating these polynomials at \(A \) gives

\[
A = t_1 B_1 + \cdots + t_k B_k,
\]

so d) is true.

We now prove b). Note first that \(\prod_{k \neq i} (x - t_k) \) divides \(P_i \). For the same reason, \((x - t_i) \) divides \(P_j \) if \(i \neq j \). Thus \((x - t_1) \ldots (x - t_k) \) divides \(P_i P_j \). Thus \(0 = (A - t_1 I) \ldots (A - t_k I) \) divides \(P_i(A) P_j(A) = B_i B_j \), so \(B_i B_j = 0 \).

To obtain c), multiply both sides of a) on the left by \(B_i \):

\[
B_i B_1 + \cdots + B_i B_k = B_i.
\]

For \(i \neq j \), \(B_i B_j = 0 \), so the left hand side is just \(B_i^2 \), giving c).
3. Let $A \in F^{n \times n}$ with $A^2 = A$. Show that A is similar to \[
\begin{bmatrix}
I_k & 0 \\
0 & 0
\end{bmatrix}
\] for some $k \leq n$.

\textit{Solution:} We first show the following:

\textbf{Claim 1.} If α is in the range of A, $A\alpha = \alpha$.

\textbf{Proof.} Since α is in the range of A, $\alpha = A\beta$ for some β. Thus $A\alpha = A \cdot A\beta = A^2\beta = A\beta = \alpha$, since $A^2 = A$. \hfill \square

Now let $\alpha_1, \ldots, \alpha_k$ be a basis for $\text{Range}(A)$. Since

$$\dim \text{Range}(A) + \dim \ker(A) = n,$$

the kernel of A has dimension $n - k$. Let $\alpha_{k+1}, \ldots, \alpha_n$ be a basis for $\ker(A)$.

\textbf{Claim 2.} With the choices above, $\mathcal{B} = \alpha_1, \ldots, \alpha_n$ is a basis for F^n.

\textbf{Proof.} Since F^n has dimension n, it suffices to show that $\alpha_1, \ldots, \alpha_n$ are linearly independent. Suppose that

$$a_1\alpha_1 + \cdots + a_n\alpha_n = 0.$$ \hfill (1)

Then multiplication by A gives

$$a_1A\alpha_1 + \cdots + a_nA\alpha_n = 0.$$ \hfill (2)

For $i > k$, $\alpha_i \in \ker(A)$, so $A\alpha_i = 0$. For $i \leq k$, $A\alpha_i = \alpha_i$ by Claim 1. Thus, (2) reduces to

$$a_1\alpha_1 + \cdots + a_k\alpha_k = 0.$$ \hfill (3)

But $\alpha_1, \ldots, \alpha_k$ is a basis of $\text{Range}(A)$, and hence is linearly independent. Thus $a_i = 0$ for $i \leq k$. But then (1) reduces to

$$a_{k+1}\alpha_{k+1} + \cdots + a_n\alpha_n = 0.$$ \hfill (4)

But $\alpha_{k+1}, \ldots, \alpha_n$ are a basis for $\ker(A)$, and hence are linearly independent. Thus $a_i = 0$ for $i > k$, and hence all the coefficients must be 0. \hfill \square

Let T be the linear transformation induced by multiplication by A: $T(\alpha) = A\alpha$. Then $[T]_{\mathcal{B}}$ is similar to A. The i-th column of $[T]_{\mathcal{B}}$ is $[T(\alpha_i)]_{\mathcal{B}}$. By Claim 1,

$$T(\alpha_i) = \begin{cases}
\alpha_i & \text{for } i \leq k \\
0 & \text{for } i > k.
\end{cases}$$
Midterm Solutions

Thus, the i-th column of $[T]_B$ is e_i if $i \leq k$, and is 0 if $i > k$, so

$$[T]_B = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}.$$

4. A matrix is upper triangular if the entries below the diagonal are all 0 (i.e., $A_{ij} = 0$ for $i > j$). Using either the permutation formula or the expansion with respect to some row or column, show that if A is upper triangular, then $\det A = A_{11} \ldots A_{nn}$, the product of the diagonal entries.

Solution: We argue by induction on n. For $n = 1$, every $n \times n$ matrix is upper triangular, and $\det A = A_{11}$, so the result is true.

Suppose inductively that $n > 1$ and that the determinant of every $(n-1) \times (n-1)$ upper triangular matrix is the product of its diagonal entries.

Let A be an $n \times n$ upper triangular matrix. We apply the expansion of $\det A$ with respect to the last row:

$$\det A = \sum_{j=1}^{n} A_{nj}(-1)^{n+j} \det A(n|j).$$

Because A is upper triangular, $A_{nj} = 0$ for $j < n$, so

$$\det A = A_{nn}(-1)^{n+n} \det A(n|n).$$

But $A(n|n)$ is an upper triangular $(n-1) \times (n-1)$ matrix whose determinant is equal to $A_{11} \ldots A_{n-1,n-1}$ by induction. The result follows.

5. Let $A, B \in F^{n \times n}$ be similar. Show that $xI - A$ and $xI - B$ are similar in $F[x]^{n \times n}$. Deduce that $\text{ch}_A(x) = \text{ch}_B(x)$. (Recall that $\text{ch}_A(x) = \det(xI - A)$.)

Solution: Let $P \in F^{n \times n}$ with $P^{-1}AP = B$. Then

$$P^{-1}(xI_n - A)P = P^{-1}xI_nP - P^{-1}AP = xI_n - B$$

because xI_n is a scalar matrix, and commutes with every element of $F[x]^{n \times n}$. Since similar matrices have the same determinant, the result follows.

6. Let $A \in F^{n \times n}$ with $A^2 = A$. Show that $\text{ch}_A(x) = (x-1)^k x^{n-k}$ for some $k \leq n$.
Solution: By Problem 3, A is similar to $B = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}$. Now B is upper triangular, hence so is $xI_n - B$, so $\text{ch}_B(x) = \det(xI_n - B)$ is the product of the diagonal entries of $xI_n - B$ (by Problem 4). But that is precisely the stated expression. But Problem 5 shows $\text{ch}_A(x) = \text{ch}_B(x)$.

7. Let $A \in F^{n \times n}$ with $A^2 = 0$. Show that $\text{ch}_A(x) = x^n$.

Solution: We need an analogue of Problem 3:

Claim 3. Let $A \in F^{n \times n}$ with $A^2 = 0$. Then A is similar to a matrix of the form

$$B = \begin{bmatrix} 0 & \ast \\ 0 & 0 \end{bmatrix},$$

where the 0 in the upper left hand corner is the $k \times k$ 0 matrix, where $k = \dim \ker A$, the 0 in the lower right is the $(n-k) \times (n-k)$ 0 matrix, and \ast is a $k \times (n-k)$ matrix which may contain nonzero entries.

Proof. Let $\alpha_1, \ldots, \alpha_k$ be a basis for $\ker A$. Extend it to a basis $B = \alpha_1, \ldots, \alpha_n$ of F^n. We shall show that if T is the linear tranformation induced by multiplication by A (i.e., $T(\alpha) = A\alpha$ for all α), then $[T]_B$ has the desired form.

To see this, recall that the i-th column of $[T]_B$ is $[T(\alpha_i)]_B$. For $i \leq k$, $\alpha_i \in \ker A$, and hence $T(\alpha_i) = 0$. Thus, the left hand blocks of $[T]_B$ are 0’s, as claimed.

To see that the lower right hand block of $[T]_B$ is 0, it suffices to show that if $i > k$, then $T(\alpha_i) \in \text{Span}(\alpha_1, \ldots, \alpha_k) = \ker A$. But $T(\alpha_i) = A\alpha_i$. Since $A^2 = 0$, $A \cdot A\beta = 0$ for all β, hence $A\beta \in \ker A$ for all $\beta \in F^n$.

The matrix B given by Claim 3 is upper triangular, hence $xI_n - B$ is, also. Thus, $\text{ch}_B(x)$ is the product of the diagonal entries of $xI_n - B$. Since the diagonal entries of B are all 0, the diagonal entries of $xI_n - B$ are all x, so $\text{ch}_B(x) = x^n$.

But $\text{ch}_B(x) = \text{ch}_A(x)$ by Problem 5.