1. Let V be a finite dimensional vector space over the complex numbers and let $T \in L(V, V)$ such that every T-invariant subspace has a T-invariant complement. Show that T is diagonalizable.

Do not use Jordan canonical form in your solution.

2. Let $A = J(c, n_1) \oplus \cdots \oplus J(c, n_k)$ with $n_1 \geq \cdots \geq n_k$.
 a) What are $\min_A(x)$ and $\ch_A(x)$?
 b) What is $\dim \ker (A - cI)$?
 c) What is the rational canonical form of A?

3. Let $T \in L(V, V)$, and suppose that $\min_T(x) = p^4$ and $\ch_T(x) = p^8$ where $p \in F[x]$ is irreducible. List all possible rational canonical forms for T.

4. Find a pair of complex matrices A and B such that
 a) $\ch_A(x) = \ch_B(x)$.
 b) $\min_A(x) = \min_B(x)$.
 c) For each eigenvalue c of A (hence also of B), the eigenspaces of A, c and of B, c have the same dimension.

5. Let
 $$A = \begin{bmatrix}
 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
 -4 & 1 & 2 & 0 & 0 & 0 & 0 & 0 \\
 2 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
 -7 & 2 & 0 & 0 & 2 & 0 & 0 & 0 \\
 9 & 0 & -2 & 0 & 1 & 2 & 0 & 0 \\
 -34 & 7 & 1 & -2 & -1 & 1 & 2 & 0 \\
 145 & -17 & -16 & 3 & 9 & -2 & 0 & 3
 \end{bmatrix}.$$

 a) What is the characteristic polynomial of A?
 b) For each eigenvalue c, find $\dim \ker (A - cI)^k$ for each k less than or equal to the multiplicity of c in $\ch_A(x)$.
 c) What is the minimal polynomial of A?
 d) What is the Jordan canonical form of A? (Write it as a formal block sum of formal Jordan blocks.)
 e) What is the rational canonical form of A? (Write it as a formal block sum of formal companion matrices.)
 f) Find an element whose A-annihilator is $(x - 2)^2$.