1. We consider $n \times n$ matrices A for which $\text{ch}_A(x) = (x - 5)^n$.

a) What is the smallest value of n for which the Jordan canonical form of A is not determined by knowing $\text{min}_A(x)$? Give an example of two different Jordan canonical forms for this n that have the same minimal polynomial.

b) What is the smallest value of n for which the Jordan canonical form of A is not determined by knowing the dimension of the eigenspace of $A; 5$? Give an example of two different Jordan canonical forms for this n whose eigenspaces have the same dimension.

c) What is the smallest value of n for which the Jordan canonical form of A is not determined by knowing both $\text{min}_A(x)$ and $\text{dim} \ N(A - 5I)$? Give an example of two different Jordan canonical forms for this n that have the same minimal polynomial and whose eigenspaces have the same dimension.

d) What is the smallest value of n for which the Jordan canonical form of A is not determined by knowing $\text{min}_A(x)$, $\text{dim} \ N(A - 5I)$ and $\text{dim} \ N(A - 5I)^2$? Give an example of two different Jordan canonical forms for this n for which these three invariants agree.

2. Let

$$A = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -8 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 14 & -12 & -1 & 1 & 3 & 0 & 0 & 0 & 0 & 0 \\ -16 & 1 & 2 & -1 & 1 & 3 & 0 & 0 & 0 & 0 \\ -14 & 1 & 3 & -1 & 1 & 0 & 3 & 0 & 0 & 0 \\ -9 & -10 & 2 & -3 & 2 & -1 & 1 & 3 & 0 & 0 \\ 22 & -13 & -7 & 3 & 2 & -2 & 0 & 1 & 3 & 0 \\ -32 & -5 & 16 & -8 & 0 & 0 & 2 & -1 & 0 & 3 \end{bmatrix}. $$

a) What is the characteristic polynomial of A?
b) For each eigenvalue c, find $\dim \ker (A - cI)^k$ for each k less than or equal to the multiplicity of c in $\text{ch}_A(x)$. (To show your work, display the reduced row echelon form for each $(A - cI)^k$ that you need for your argument. You may use maple to reduce the matrices.)

c) What is the minimal polynomial of A?

d) What is the Jordan canonical form of A? (Write it as a formal block sum of formal Jordan blocks.)

e) If you know the minimal polynomial, for how many values of k, beginning with $k = 1$ and incrementing by ones, do you need to calculate $\dim \ker (A - 3I)^k$ in order to determine the Jordan canonical form?

f) If you don’t know the minimal polynomial, for how many values of k, beginning with $k = 1$ and incrementing by ones, do you need to calculate $\dim \ker (A - 3I)^k$ in order to determine the Jordan canonical form?

3. Find all irreducible-power rational polynomials f such that the matrix $A = C(f)$ satisfies $A^8 = I$. (Hint: $\text{min}_A(x)$ must divide $x^8 - 1$.) Use this to give the prime-power decomposition “rational form” for all rational $n \times n$ matrices A with $A^8 = I$, where n is:

a) 4,

b) 8.