The following are wallpaper patterns. On each one, indicate the following with colored ink:

- Shortest translations, τ_v and τ_w, in two different directions, that preserve the pattern and form the boundary of a fundamental region R for T.
- All n-centers for each possible n.
- All lines of symmetry.
- If there are glide reflections but no reflections, give the axes for the glide reflections.
- A fundamental region, R, for T. If W is a W_3-group that contains lines of symmetry, base it at a 3-center on a line of symmetry. Otherwise base it at an n-center for the largest possible n.
- A fundamental region, S for W.

1. a) How many T-orbits are there of n-centers for each possible n and what is their isotropy? SOLUTION: No centers.
 b) Which wallpaper group is W? SOLUTION: W_1. There are no symmetries other than translations.
2. Wallpaper patterns

a) How many T-orbits are there of n-centers for each possible n and what is their isotropy? SOLUTION: No centers.
b) Which wallpaper group is W? SOLUTION: $W_3^6 = K$, the Klein bottle group. There are glide reflections but no reflections.

3. Wallpaper patterns

a) How many T-orbits are there of n-centers for each possible n and what is their isotropy? SOLUTION: Two T-orbits of 4-centers, both D_8, and two T-orbits of 2-centers, both D_4.
b) Which wallpaper group is W? SOLUTION: W_4^1.

4. a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy?

Solution: Two \mathcal{T}-orbits of 4-centers, both C_4, and two \mathcal{T}-orbits of 2-centers, both C_2.

b) Which wallpaper group is \mathcal{W}?

Solution: \mathcal{W}_4.

5. a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy?

Solution: Two \mathcal{T}-orbits of 4-centers, both C_4, and two \mathcal{T}-orbits of 2-centers, both D_4.

b) Which wallpaper group is \mathcal{W}?

Solution: \mathcal{W}_4^2.

6. a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy? SOLUTION: Four \mathcal{T}-orbits of 2-centers, two D_4 and two C_2.

b) Which wallpaper group is W? SOLUTION: W_2^1.

7. a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy? SOLUTION: Four \mathcal{T}-orbits of 2-centers, all D_4.

b) Which wallpaper group is W? SOLUTION: W_2^2.

8. a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy? SOLUTION: Four \mathcal{T}-orbits of 2-centers, all C_2.

b) Which wallpaper group is W? SOLUTION: W_2.
Wallpaper patterns

9.

a) How many T-orbits are there of n-centers for each possible n and what is their isotropy? Solution: Four T-orbits of 2-centers, all C_2.

b) Which wallpaper group is W? Solution: W_3^2: there are glide reflections but no reflections.

10.

a) How many T-orbits are there of n-centers for each possible n and what is their isotropy? Solution: Four T-orbits of 2-centers, all C_2.

b) Which wallpaper group is W? W_2^3: there are reflections, but not through any points of symmetry.
11. a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy? Solution: Three \mathcal{T}-orbits of 3-centers, all D_6.

b) Which wallpaper group is \mathcal{W}? Solution: \mathcal{W}_3^1.

12. a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy? Solution: Three \mathcal{T}-orbits of 3-centers, one D_6 and the others C_3.

b) Which wallpaper group is \mathcal{W}? Solution: \mathcal{W}_3^2.
13. a) How many \(T \)-orbits are there of \(n \)-centers for each possible \(n \) and what is their isotropy? SOLUTION: Three \(T \)-orbits of 3-centers, all \(C_3 \).

b) Which wallpaper group is \(W \)? SOLUTION: \(W_3 \).

14. a) How many \(T \)-orbits are there of \(n \)-centers for each possible \(n \) and what is their isotropy? SOLUTION: One \(T \)-orbit of 6-centers, \(C_6 \). Two \(T \)-orbits of 3-centers, both \(C_3 \). Three \(T \)-orbits of 2-centers, all \(C_2 \).

b) Which wallpaper group is \(W \)? SOLUTION: \(W_6 \).
15.

a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy? **SOLUTION:** One \mathcal{T}-orbit of 6-centers, D_{12}. Two \mathcal{T}-orbits of 3-centers, both D_6. Three \mathcal{T}-orbits of 2-centers, all D_4.

b) Which wallpaper group is W? **SOLUTION:** W_6^1.

16.

a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy? **SOLUTION:** no centers.

b) Which wallpaper group is W? **SOLUTION:** W_1^1: rhombic fundamental region for \mathcal{T} with a reflection across one of the diagonals.
17. a) How many T-orbits are there of n-centers for each possible n and what is their isotropy? SOLUTION: no centers.
b) Which wallpaper group is W? W^2_1: rectangular fundamental region for T with reflections parallel to one pair of opposite edges.