The following are wallpaper patterns. On each one, indicate the following with colored ink:

- Shortest translations, \(\tau_v \) and \(\tau_w \), in two different directions, that preserve the pattern and form the boundary of a fundamental region \(R \) for \(T \).
- All \(n \)-centers for each possible \(n \).
- All lines of symmetry.
- If there are glide reflections but no reflections, give the axes for the glide reflections.
- A fundamental region, \(R \), for \(T \). If \(W \) is a \(W_3 \)-group that contains lines of symmetry, base it at a 3-center on a line of symmetry. Otherwise base it at an \(n \)-center for the largest possible \(n \).
- A fundamental region, \(S \) for \(W \).

1. (a) How many \(T \)-orbits are there of \(n \)-centers for each possible \(n \) and what is their isotropy?
 (b) Which wallpaper group is \(W \)?
2. (a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy?
(b) Which wallpaper group is W?

3. (a) How many \mathcal{T}-orbits are there of n-centers for each possible n and what is their isotropy?
(b) Which wallpaper group is W?
4. (a) How many T-orbits are there of n-centers for each possible n and what is their isotropy?
(b) Which wallpaper group is W?

5. (a) How many T-orbits are there of n-centers for each possible n and what is their isotropy?
(b) Which wallpaper group is W?
6. Extra credit:
 (a) Describe the orbit space for Problem 2 in terms of identifications made on S. Draw the picture and indicate the identifications with arrow heads and also describe the orbit space in words.

 (b) Describe the orbit space for Problem 3 in terms of identifications made on S. Draw the picture and indicate the identifications with arrow heads and also describe the orbit space in words.