The following are wallpaper patterns. On each one, indicate the following with colored ink:

- Shortest translations, τ_v and τ_w, in two different directions, that preserve the pattern and form the boundary of a fundamental region T for \mathcal{T}.
- All n-centers for each possible n.
- All lines of symmetry.
- A fundamental region, T, for \mathcal{T}. If \mathcal{W} is a W_3-group that contains lines of symmetry, base it at a 3-center on a line of symmetry. Otherwise base it at an n-center for the largest possible n.
- A fundamental region, S for \mathcal{W}.

1.

a) How many T-orbits are there of n-centers for each possible n and what are their isotropy subgroups?

b) Which wallpaper group is \mathcal{W}?

2.

a) How many T-orbits are there of n-centers for each possible n and what are their isotropy subgroups?

b) Which wallpaper group is \mathcal{W}?
3. a) How many T-orbits are there of n-centers for each possible n and what are their isotropy subgroups?

b) Which wallpaper group is W?

4. a) How many T-orbits are there of n-centers for each possible n and what are their isotropy subgroups?

b) Which wallpaper group is W?
5.

a) How many T-orbits are there of n-centers for each possible n and what are their isotropy subgroups?

b) Which wallpaper group is W?