The following are wallpaper patterns. On each one, indicate the following with colored ink:

- Shortest translations, τ_x and τ_y, in two different directions, that preserve the pattern and form the boundary of a fundamental region R for T.
- All n-centers for each possible n.
- All lines of symmetry.
- A fundamental region, R, for T. If W is a W_3-group that contains lines of symmetry, base it at a 3-center on a line of symmetry. Otherwise base it at an n-center for the largest possible n.
- A fundamental region, S for W.

1. Bricks:

```
+----------+----------+----------+----------+
|          |          |          |          |
|          |          |          |          |
+----------+----------+----------+----------+
|          |          |          |          |
|          |          |          |          |
+----------+----------+----------+----------+
|          |          |          |          |
|          |          |          |          |
+----------+----------+----------+----------+
```

a) How many T-orbits are there of n-centers for each possible n?

b) What is the isotropy subgroup of each orbit of n-centers?

c) Which wallpaper group is W?
2. A rather complicated hex pattern. Take your time.

a) How many T-orbits are there of n-centers for each possible n?

b) What is the isotropy subgroup of each orbit of n-centers?

c) Which wallpaper group is W?
3. a) How many T-orbits are there of n-centers for each possible n?

b) What is the isotropy subgroup of each orbit of n-centers?

c) Which wallpaper group is W?

4. a) How many T-orbits are there of n-centers for each possible n?

b) What is the isotropy subgroup of each orbit of n-centers?

c) Which wallpaper group is W?
5. a) How many T-orbits are there of n-centers for each possible n?

b) What is the isotropy subgroup of each orbit of n-centers?

c) Which wallpaper group is W?