Math 331 Exam 1 Solutions Spring 2014

1. Let ℓ be the line $y = -\frac{1}{\sqrt{3}} x + \frac{2}{\sqrt{3}}$. Let $\alpha = \sigma_{\ell} \rho_{(0, \frac{\pi}{3})}$. Write α in standard form (i.e., as a translation, rotation, reflection, or glide reflection in standard form).

Solution: we write $\rho_{(0, \frac{\pi}{3})} = \sigma_{m} \sigma_{n}$ with $m \parallel \ell$. Thus,

$$\text{slope}(m) = \text{slope}(\ell) = -\frac{1}{\sqrt{3}}.$$

Since $m \cap n = 0$, m is the line $y = -\frac{1}{\sqrt{3}} x$. The directed angle from n to m is $\frac{\pi}{2} \cdot \frac{\pi}{3}$, so the directed angle from m to n is $-\frac{\pi}{6}$. Since the directed angle from the positive x-axis to m is $-\frac{\pi}{6}$, the slope of n is $\tan^{-1}(-\frac{\pi}{3}) = -\sqrt{3}$. Since $0 \in n$, the equation for n is $y = -\sqrt{3} x$. Thus,

$$\alpha = \sigma_{\ell} \sigma_{m} \sigma_{n} = \tau_{v} \sigma_{n},$$

where v is twice the directed distance from m to ℓ. To find that distance, we let q be the line through the origin perpendicular to ℓ and m. So

$$\text{slope}(q) = -\frac{1}{\text{slope}(m)} = \sqrt{3}.$$

So q is the line $y = \frac{1}{\sqrt{3}} x$. Now $v = 2(\ell \cap q - m \cap q) = 2(\ell \cap q)$. To calculate $\ell \cap q$ we set

$$\sqrt{3} x = -\frac{1}{\sqrt{3}} x + \frac{2}{\sqrt{3}}$$

$$3x = -x + 2$$

$$x = \frac{1}{2}.$$

So $y = \frac{\sqrt{3}}{2}$, and $v = 2\left[\begin{array}{c} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{array}\right] = \left[\begin{array}{c} 1 \\ \sqrt{3} \end{array}\right]$. So

$$\alpha = \tau_{\left[\begin{array}{c} 1 \\ \sqrt{3} \end{array}\right]} \sigma_{m}.$$

To put this in standard form we need to write $v = w + z$ with $w \parallel n$ and $z \perp n$. Now, $n = \text{span}(u)$, where u is the unit vector $\left[\begin{array}{c} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{array}\right]$. Then $u^\perp = \left[\begin{array}{c} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{array}\right]$. Since u, u^\perp is an orthonormal basis of \mathbb{R}^2, we
have

\[v = \langle v, u \rangle u + \langle v, u \perp \rangle u \perp \]

\[= \left[\begin{bmatrix} \frac{1}{\sqrt{3}} \\ -\frac{\sqrt{3}}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \right] \left[\begin{bmatrix} \frac{1}{\sqrt{3}} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} \right] + \left[\begin{bmatrix} \frac{1}{\sqrt{3}} \\ -\frac{\sqrt{3}}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{3}} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} \right] \]

\[= -\left[\begin{bmatrix} \frac{1}{\sqrt{3}} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} \right] + \sqrt{3} \left[\begin{bmatrix} \frac{1}{\sqrt{3}} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} \right] \]

\[= \left[\begin{bmatrix} -\frac{1}{\sqrt{3}} \\ \frac{\sqrt{3}}{4} \end{bmatrix} \right] + \left[\begin{bmatrix} \frac{3}{\sqrt{3}} \\ \frac{\sqrt{3}}{4} \end{bmatrix} \right] \]

\[= w + z. \]

Note it is easy to check that \(w + z = v \), providing a check on your work.

Now \(\tau_v = \tau_w \tau_z \), so

\[\alpha = \tau_w (\tau_z \sigma_n) \]

\[= \tau_w \sigma_{\tau_z (n)}, \]

since \(z \perp n \). Since \(w \parallel n \parallel \tau_z (n) \), this is a glide reflection in standard form, and it suffices to calculate \(\tau_z (n) \). Since \(0 \in n, \frac{z}{2} \in \tau_z (n) \). Note

\[\frac{z}{2} = \left[\begin{bmatrix} \frac{3}{4} \\ \frac{\sqrt{3}}{4} \end{bmatrix} \right] \]

and since slope(\(n \)) = \(-\sqrt{3}\), the point-slope formula for \(\tau_z (n) \) is

\[
\frac{y - \frac{\sqrt{3}}{4}}{x - \frac{3}{4}} = -\sqrt{3} \\
\frac{y - \sqrt{3}}{4} = -\sqrt{3} x + \frac{3\sqrt{3}}{4} \\
y = -\sqrt{3} x + \sqrt{3}
\]
2. Let \(\alpha = \rho\left(\begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}, \frac{\pi}{3}\right)\rho(0, \frac{\pi}{3}) \). Write \(\alpha \) in standard form (i.e., as a translation, rotation, reflection, or glide reflection in standard form).

Solution: Write \(\rho\left(\begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}, \frac{\pi}{3}\right) = \sigma_L \sigma_m \) and write \(\rho(0, \frac{\pi}{3}) = \sigma_m \sigma_n \).

Then,

\[
\ell \cap m = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix} \quad \text{and the directed angle from } m \text{ to } \ell \text{ is } \frac{\pi}{6},
\]

\[
m \cap n = 0 \quad \text{and the directed angle from } n \text{ to } m \text{ is } \frac{\pi}{6}.
\]

Since both 0 and \(\begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix} \) lie on \(m \), \(m = \text{span} \left(\begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix} \right) \), which is the line \(y = \sqrt{3}x \). From the directed angle, we see \(\ell \) is vertical. Since \(\begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix} \in \ell \), \(\ell \) is the line \(x = 1 \). Finally, the directed angles show that \(n \) has slope \(\frac{1}{\sqrt{3}} \). Since \(0 \in n \), \(n \) is the line \(y = \frac{1}{\sqrt{3}}x \). We have

\[
\alpha = \sigma_L \sigma_m \sigma_n = \sigma_L \sigma_n = \rho(\ell \cap n, \frac{\pi}{3}) = \rho\left(\begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}, \frac{\pi}{3}\right).
\]