1. Compute $\rho_{[0]}^{[1]} \circ \rho_{[0]}^{[1]} : \pi$ explicitly.

Solution: Write ℓ for the line $y = -x + 1$, m for the line $x = 1$ and n for the line $y = 1$:

\[
\begin{array}{c}
\ell \\
\mid \\
\mid \\
m \\
\mid \\
3. Let ℓ be the line $y = 2x + 5$, m the line $y = 2x + 1$, and n the line $y = -\frac{1}{2}x$. Calculate the following explicitly:

a) $\sigma_n\sigma_\ell$

Solution: $\ell \perp n$, so $\sigma_n\sigma_\ell = \rho_{P,\pi}$, where $P = \ell \cap n$. To find P, set $2x + 5 = -\frac{1}{2}x$. We get $x = \frac{2}{5}(-5) = -2$. So $y = -\frac{1}{2}(-2) = 1$, hence $P = [-2, 1]^T$.

b) $\sigma_n\sigma_m$

Solution: $m \perp n$, so $\sigma_n\sigma_m = \rho_{Q,\pi}$, where $Q = m \cap n$. To find Q, set $2x + 1 = -\frac{1}{2}x$. We get $x = \frac{2}{5}(-1) = -\frac{2}{5}$. So $y = -\frac{1}{2}(-\frac{2}{5}) = \frac{1}{5}$, hence $Q = [-\frac{2}{5}, \frac{1}{5}]^T$.

c) $\sigma_m\sigma_\ell$

Solution: $m \parallel \ell$, so $\sigma_m\sigma_\ell$ is the translation by twice the directed distance from ℓ to m. Since n is perpendicular to ℓ and m, the directed distance from ℓ to m is $m \cap n - \ell \cap n$, or $Q - P$, with P and Q as above. So $\sigma_m\sigma_\ell = \tau_{O,2(Q-P)} = \tau_{O,\frac{10}{3}[\frac{1}{3}, \frac{2}{5}]^T}$.

4. Let ℓ be the line $y = 0$ (the x-axis), m the line $x = 0$ (the y-axis), n the line $y = \sqrt{3}x$. Compute the following explicitly:

a) $\sigma_n\sigma_\ell\sigma_m$

Solution: $\ell \cap n = O$, and the directed angle from ℓ to n is $\frac{\pi}{3}$, so $\sigma_n\sigma_\ell = \rho_{O,\frac{\pi}{3}} = \sigma_q\sigma_m$, where q goes through O and makes an angle of $\frac{\pi}{2} + \frac{\pi}{3} = \frac{5\pi}{6}$ with respect to the x-axis. So the equation of q is $y = -\frac{1}{\sqrt{3}}x$. We have $\sigma_n\sigma_\ell\sigma_m = \rho_{O,\frac{2\pi}{3}}\sigma_m = \sigma_q\sigma_m\sigma_m = \sigma_q$.

b) $\sigma_n\sigma_\ell\sigma_n$

Solution: As above, $\sigma_n\sigma_\ell = \rho_{O,\frac{2\pi}{3}}$. Here, we write $\rho_{O,\frac{2\pi}{3}} = \sigma_r\sigma_n$, where the directed angle from n to r is $\frac{\pi}{3}$. So r makes an angle of $\frac{2\pi}{3}$ with respect to the x-axis, hence r has the formula $y = -\sqrt{3}x$. We have $\sigma_n\sigma_\ell\sigma_n = \sigma_r\sigma_n\sigma_n = \sigma_r$.

Exam 1 Solutions

3. Let ℓ be the line $y = 2x + 5$, m the line $y = 2x + 1$, and n the line $y = -\frac{1}{2}x$. Calculate the following explicitly:

a) $\sigma_n\sigma_\ell$

Solution: $\ell \perp n$, so $\sigma_n\sigma_\ell = \rho_{P,\pi}$, where $P = \ell \cap n$. To find P, set $2x + 5 = -\frac{1}{2}x$. We get $x = \frac{2}{5}(-5) = -2$. So $y = -\frac{1}{2}(-2) = 1$, hence $P = [-2, 1]^T$.

b) $\sigma_n\sigma_m$

Solution: $m \perp n$, so $\sigma_n\sigma_m = \rho_{Q,\pi}$, where $Q = m \cap n$. To find Q, set $2x + 1 = -\frac{1}{2}x$. We get $x = \frac{2}{5}(-1) = -\frac{2}{5}$. So $y = -\frac{1}{2}(-\frac{2}{5}) = \frac{1}{5}$, hence $Q = [-\frac{2}{5}, \frac{1}{5}]^T$.

c) $\sigma_m\sigma_\ell$

Solution: $m \parallel \ell$, so $\sigma_m\sigma_\ell$ is the translation by twice the directed distance from ℓ to m. Since n is perpendicular to ℓ and m, the directed distance from ℓ to m is $m \cap n - \ell \cap n$, or $Q - P$, with P and Q as above. So $\sigma_m\sigma_\ell = \tau_{O,2(Q-P)} = \tau_{O,\frac{10}{3}[\frac{1}{3}, \frac{2}{5}]^T}$.

4. Let ℓ be the line $y = 0$ (the x-axis), m the line $x = 0$ (the y-axis), n the line $y = \sqrt{3}x$. Compute the following explicitly:

a) $\sigma_n\sigma_\ell\sigma_m$

Solution: $\ell \cap n = O$, and the directed angle from ℓ to n is $\frac{\pi}{3}$, so $\sigma_n\sigma_\ell = \rho_{O,\frac{\pi}{3}} = \sigma_q\sigma_m$, where q goes through O and makes an angle of $\frac{\pi}{2} + \frac{\pi}{3} = \frac{5\pi}{6}$ with respect to the x-axis. So the equation of q is $y = -\frac{1}{\sqrt{3}}x$. We have $\sigma_n\sigma_\ell\sigma_m = \rho_{O,\frac{2\pi}{3}}\sigma_m = \sigma_q\sigma_m\sigma_m = \sigma_q$.

b) $\sigma_n\sigma_\ell\sigma_n$

Solution: As above, $\sigma_n\sigma_\ell = \rho_{O,\frac{2\pi}{3}}$. Here, we write $\rho_{O,\frac{2\pi}{3}} = \sigma_r\sigma_n$, where the directed angle from n to r is $\frac{\pi}{3}$. So r makes an angle of $\frac{2\pi}{3}$ with respect to the x-axis, hence r has the formula $y = -\sqrt{3}x$. We have $\sigma_n\sigma_\ell\sigma_n = \sigma_r\sigma_n\sigma_n = \sigma_r$.
