Math 331 Exam 1 Solutions Spring ’05

1. Compute $\rho_{\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right], \pi}^{\left[\begin{smallmatrix} 2 \\ 0 \end{smallmatrix}\right]}$ explicitly.

 Solution: Let ℓ be the line $y = 0$, m the line through $\left[\begin{smallmatrix} 2 \\ 0 \end{smallmatrix}\right]$ with slope -1 and n the line through the origin with slope 1. Then $\ell \cap m = \left[\begin{smallmatrix} 2 \\ 0 \end{smallmatrix}\right]$ and the angle from m to ℓ is $\frac{\pi}{4}$, so $\rho_{\left[\begin{smallmatrix} 2 \\ 0 \end{smallmatrix}\right], \pi}^{\left[\begin{smallmatrix} 2 \\ 0 \end{smallmatrix}\right]} = \sigma_\ell \sigma_m$.

 Note that the point slope formula for m gives

 $$\frac{y - 0}{x - 2} = -1,$$

 so m is the line $y = -x + 2$.

 The line n, of course, is $y = x$. Since $\ell \cap n = O$ and the angle from ℓ to n is $\frac{\pi}{4}$, we have $\rho_{\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right], \pi}^{\left[\begin{smallmatrix} 2 \\ 0 \end{smallmatrix}\right]} = \sigma_n \sigma_\ell$. Thus,

 $$\rho_{\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right], \pi}^{\left[\begin{smallmatrix} 2 \\ 0 \end{smallmatrix}\right]} = \sigma_n \sigma_\ell \sigma_m = \sigma_n \sigma_m.$$

 Now, the point of intersection of m and n is given by solving $-x + 2 = x$, hence $x = 1$, so $y = 1$, hence $m \cap n = \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right]$. Since the angle from m to n is $\frac{\pi}{2}$, we get

 $$\rho_{\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right], \pi}^{\left[\begin{smallmatrix} 2 \\ 0 \end{smallmatrix}\right]} = \rho_{\left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right], \pi}.$$

2. Compute $\rho_{\left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right], \frac{\pi}{2}}^{\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]}$ explicitly.

 Solution: Here, we let ℓ be the line $y = -x + 1$, which goes through both $\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$ and $\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$. We choose m to be the line through $\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$ such that the angle from m to ℓ is $\frac{\pi}{4}$, as this will give

 $$\rho_{\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right], \frac{\pi}{2}}^{\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]} = \sigma_\ell \sigma_m.$$

 From the angles given, we see that m must be vertical, so m is the line $x = 1$.

 Now let n be the line through $\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$ such that the angle from ℓ to n is $-\frac{\pi}{4}$. This will give

 $$\rho_{\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right], -\frac{\pi}{2}}^{\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]} = \sigma_n \sigma_\ell.$$

 Again, n must be vertical, so n is the line $x = 0$.

 Now

 $$\rho_{\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right], -\frac{\pi}{2}}^{\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right], \frac{\pi}{2}} = \sigma_n \sigma_\ell \sigma_m = \sigma_n \sigma_m.$$
Since \(m \) and \(n \) are parallel, \(\sigma_n \sigma_m \) is the translation by twice the directed distance from \(m \) to \(n \), so
\[
\rho_{[0]} \cdot \frac{\rho_{[1]} \cdot \rho_{[0]}}{2} = \tau_{O, \frac{\rho_{[1]} \cdot \rho_{[0]}}{2}}.
\]

3. Compute \(\tau_{O, \frac{0}{2}} \rho_{O, \frac{z_3}{2}} \) explicitly.

SOLUTION: As usual, we write \(\tau_{O, \frac{0}{2}} \rho_{O, \frac{z_3}{2}} = \sigma_n \sigma_\ell \) and \(\rho_{O, \frac{z_3}{2}} = \sigma_\ell \sigma_m \).

The latter forces \(\ell \) to go through the origin, while the former forces \(\ell \) to be perpendicular to \(\overline{O \cdot \frac{0}{2}} \); in fact, the directed distance from \(\ell \) to \(n \) must be \(\frac{1}{2} [0 \cdot 2] = [0 \cdot 1] \). Thus, \(\ell \) is the \(x \)-axis, and \(n \) is the line \(y = -1 \).

Now \(\rho_{O, \frac{z_3}{2}} = \sigma_\ell \sigma_m \) forces \(m \) to go through the origin, such that the angle from \(m \) to \(\ell \) is \(\frac{\pi}{3} \). Since \(\ell \) is the \(x \)-axis this forces \(m \) to have slope \(-\sqrt{3} \). So \(m \) is the line \(y = -\sqrt{3} x \).

As before, \(\tau_{O, \frac{0}{2}} \rho_{O, \frac{z_3}{2}} = \sigma_n \sigma_\ell \sigma_m \), the rotation around \(n \cap \ell \) by twice the angle from \(m \) to \(n \). Since \(n \parallel \ell \), the angle is \(\frac{\pi}{3} \). The point of intersection is found by setting \(-1 = -\sqrt{3} x \), hence \(x = \frac{1}{\sqrt{3}} \) and \(y = -1 \), so
\[
\tau_{O, \frac{0}{2}} \rho_{O, \frac{z_3}{2}} = \rho_{\left[\frac{1}{\sqrt{3}} \right], \frac{2\pi}{3}}
\]

4. Let \(\ell \) be the line \(y = 0 \) (the \(x \)-axis), and \(m \) the line \(y = x \). Compute \(\sigma_m \sigma_\ell \sigma_m \) explicitly.

SOLUTION: The angle from \(\ell \) to \(m \) is \(\frac{\pi}{4} \), so
\[
\sigma_m \sigma_\ell = \rho_{O, \frac{\pi}{4}} = \sigma_q \sigma_m,
\]
where \(q \) goes through the origin and the angle from \(m \) to \(q \) is \(\frac{\pi}{4} \). Thus, \(q \) is the \(y \)-axis. We have
\[
\sigma_m \sigma_\ell \sigma_m = \sigma_q \sigma_m \sigma_m = \sigma_q.
\]

5. Let \(\ell \) be the line \(y = 4x + 6 \), \(m \) the line \(y = 4x - 2 \), and \(n \) the line \(y = -\frac{1}{4}x \). Calculate the following explicitly:

a) \(\sigma_n \sigma_\ell \)

SOLUTION: \(P = n \cap \ell \) is given by setting \(-\frac{1}{3} x = 4x + 6 \), or \(\frac{17}{4} x = -6 \). So \(x = -\frac{24}{17} \), hence \(y = \frac{6}{17} \). So \(P = \left[\frac{-24}{17}, \frac{6}{17} \right] \). Since the angle from \(\ell \) to \(n \) is \(\frac{\pi}{2} \),
\[
\sigma_n \sigma_\ell = \rho_{\left[\frac{-24}{17}, \frac{6}{17} \right], \frac{\pi}{2}}
\]
b) $\sigma_n \sigma_m$

Solution: $Q = n \cap m$ is given by setting $-\frac{1}{2}x = 4x - 2$, or $\frac{17}{4}x = 2$. So $x = \frac{8}{17}$, hence $y = \frac{2}{17}$. So $Q = \left[\frac{8}{17} \right]$. Since the angle from ℓ to n is $\frac{\pi}{2}$,

$$\sigma_n \sigma_\ell = \rho \left[\frac{8}{17}, \frac{2}{17} \right], \pi$$

c) $\sigma_m \sigma_\ell$.

Solution: Since $n \parallel \ell$, $\sigma_m \sigma_\ell$ is translation by twice the directed distance from ℓ to n. Since n is perpendicular to ℓ and m, that distance is $Q - P = \left[\frac{\frac{17}{17}}{\frac{17}{17}} \right]$, so

$$\sigma_m \sigma_\ell = \tau \left[\frac{64}{17}, \frac{16}{17} \right]$$