1. Let
\[f = (x^2 - 1)^3(x^2 + 1)^4(x - 1)^6(x - 2)^7 \quad \text{and} \]
\[g = (x^2 - 1)^5(x^2 + 1)^2(x - 1)^4(x - 3)^2. \]
 a) What is the g.c.d. of \(f \) and \(g \) in \(\mathbb{Q}[X] \)?
 b) What is the least common multiple of \(f \) and \(g \) in \(\mathbb{Q}[X] \)?

2. Let \(f = x^3 + 2x^2 + 4 \). In which of the following is \(f \) irreducible?
 Show your work.
 a) \(\mathbb{Q}[x] \) b) \(\mathbb{Z}_3[x] \) c) \(\mathbb{Z}_5[x] \) d) \(\mathbb{Z}_7[x] \) e) \(\mathbb{R}[x] \)

3. Let \(f = 5x^6 + 2x^4 + 15x^2 - 12 \). List all the candidates for rational roots of \(f \), as identified by the theorem on rational roots.

4. Determine whether the following polynomial is irreducible in \(\mathbb{Q}[x] \) or not. **Show your work.** If you use Eisenstein’s criterion, say which prime you used and what verifications you made to show the criterion is satisfied.
 \[f = 2x^4 + 30x^3 + 60x^2 + 90 \]

5. Give prime factorizations in \(\mathbb{Z}_2[x] \) for the following polynomials. Give proofs that the factors are prime. (You may use the results from class on the irreducibles in degrees \(\leq 2 \).
 a) \(f = x^6 + x^5 + x^3 + x + 1 \)
 b) \(f = x^6 + x^4 + x^3 + x^2 + x + 1 \)

6. Let
\[f = (x^2 - 1)^2(x^2 + 1)^5(x - 1)^4(x - 2)^2 \quad \text{and} \]
\[g = (x^2 - 1)^4(x^2 + 1)^3(x - 1)^3(x - 3)^3. \]
 a) What is the g.c.d. of \(f \) and \(g \) in \(\mathbb{Q}[X] \)?
 b) What is the least common multiple of \(f \) and \(g \) in \(\mathbb{Q}[X] \)?

7. Let \(f = x^3 + 7x + 29 \). In which of the following is \(f \) irreducible?
 Show your work.
 a) \(\mathbb{Q}[x] \) b) \(\mathbb{Z}_2[x] \) c) \(\mathbb{Z}_3[x] \) d) \(\mathbb{Z}_5[x] \) e) \(\mathbb{Z}_7[x] \)

8. Let \(f = 7x^5 + 3x^4 + 15x^2 + 10 \). List all the candidates for rational roots of \(f \), as identified by the theorem on rational roots.
9. Determine whether the following polynomial is irreducible in $\mathbb{Q}[x]$ or not. **Show your work.** If you use Eisenstein’s criterion, say which prime you used and what verifications you made to show the criterion is satisfied.

$$f = 3x^4 + 150x^3 + 30x^2 + 60$$

10. Give prime factorizations in $\mathbb{Z}_2[x]$ for the following polynomials. Give proofs that the factors are prime. (You may use the results from class on the irreducibles in degrees ≤ 2.

a) $f = x^6 + x^5 + x^3 + x + 1$

b) $f = x^6 + x^4 + x^3 + x^2 + x + 1$

11. Let $f = 5x^7 + 29x^3 - 14$. List all the candidates for rational roots of f, as identified by the theorem on rational roots.

12. Determine whether the following polynomials are irreducible in $\mathbb{Q}[X]$ or not. **Show your work.** If you use Eisenstein’s criterion, say which prime you used.

a) $f = 10X^7 + 60X^5 + 90X^2 + 15$

b) $f = X^6 + 2X^5 + 2X + 4$

c) $f = X^8 + 30X^5 + 12X^2 + 18$

13. a) Show that $f = X^3 + X + 3$ is irreducible in $\mathbb{Q}[X]$.

b) Let $F = \mathbb{Q}[X]/(f)$ and let $\alpha = [X]_f$. What is the inverse of $\alpha + 1$ in F^\times?

14. Let

$$f = (x^2 + x + 1)^2(x + 1)^3(x - \frac{2}{3})(x - 2)^9$$

$$g = (x^2 + x + 1)^5(x + 1)(x - \frac{2}{3})^3(x - 5)^6.$$

a) What is the g.c.d. of f and g in $\mathbb{Q}[X]$?

b) What is the least common multiple of f and g in $\mathbb{Q}[X]$?

15. Give prime factorizations of the following elements of $\mathbb{Z}_2[x]$. Prove that each of the factors is irreducible. (We showed in class which polynomials of degree ≤ 2 were irreducible. You may use this in your work.)

a) $f = x^6 + x^5 + x^4 + x^3 + 1$

b) $f = x^6 + x^5 + x^2 + 1$

c) $f = x^6 + x^5 + x^2 + 1$.