Math 326 Exam 3 Spring ’05

1. Let \(f = 3x^5 + 2x^4 + 8x^2 + 10 \). List all the candidates for rational roots of \(f \), as identified by the theorem on rational roots.

2. Give a prime factorization in \(\mathbb{Z}_2[x] \) for the following polynomial. Give proofs that the factors are prime. (You may use the results from class on the irreducibles in degrees \(\leq 4 \).)

\[
f = x^7 + x^3 + x + 1
\]

3. Let \(f = x^3 + 4x + 2 \). In which of the following is \(f \) irreducible?
 a) \(\mathbb{Q}[x] \)
 b) \(\mathbb{Z}_2[x] \)
 c) \(\mathbb{Z}_3[x] \)
 d) \(\mathbb{Z}_5[x] \)
 e) \(\mathbb{R}[x] \)

4. Let \(f = x^4 + x^3 + x^2 + x + 1 \in \mathbb{Z}_2[x] \), and let \(\mathbb{F} = \mathbb{Z}_2[x]/(f) \), a field. Let \(\alpha = [x]_f \).
 a) What are the possible orders of the elements of \(\mathbb{F}^\times \)?
 b) What is the order of \(\alpha \) in \(\mathbb{F}^\times \)?
 c) What is the order of \(\alpha + 1 \) in \(\mathbb{F}^\times \)?
 d) Find a primitive element of \(\mathbb{F} \).

5. Let \(f = x^2 - 2 \in \mathbb{Z}_{11}[x] \), and let \(\mathbb{F} = \mathbb{Z}_{11}[x]/(f) \), a field. Let \(\alpha = [x]_f \).
 a) What are the possible orders of the elements of \(\mathbb{F}^\times \)?
 b) What is the order of \(\alpha \) in \(\mathbb{F}^\times \)?
 c) What is the order of \(\alpha^{72} \) in \(\mathbb{F}^\times \)?
 d) What is the order of \(7\alpha \) in \(\mathbb{F}^\times \)?
 e) What is the order of \(\alpha + 1 \) in \(\mathbb{F}^\times \)?