1. Does the following polynomial satisfy Eisenstein’s criterion? If so, show why, and if not show why not.

\[f = 5x^7 + 70x^3 + 60x^2 + 30 \]

2. Let \(f = 2x^5 + 2x^4 + 8x^2 + 15 \). List all the candidates for rational roots of \(f \), as identified by the theorem on rational roots.

3. Give a prime factorization in \(\mathbb{Z}_2[x] \) for the following polynomial. Give proofs that the factors are prime. (You may use the results from class on the irreducibles in degrees \(\leq 4 \)).

\[x^7 + x^6 + x^5 + x^2 + x + 1 \]

4. Let \(f = x^4 + 4x + 8 \). In which of the following is \(f \) irreducible?
 a) \(\mathbb{Q}[x] \) b) \(\mathbb{Z}_2[x] \) c) \(\mathbb{Z}_3[x] \) d) \(\mathbb{Z}_5[x] \) e) \(\mathbb{R}[x] \)

5. Let \(f = x^4 + x^3 + 1 \in \mathbb{Z}_2[x] \), and let \(\mathbb{F} = \mathbb{Z}_2[x]/(f) \), a field. Let \(\alpha = [x]_f \).
 a) What are the possible orders of the elements of \(\mathbb{F}^\times \)?
 b) What is the order of \(\alpha \) in \(\mathbb{F}^\times \)?
 c) What is the order of \(\alpha + 1 \) in \(\mathbb{F}^\times \)?
 d) Find a primitive element of \(\mathbb{F} \).

6. Let \(f = x^2 - 3 \in \mathbb{Z}_7[x] \), and let \(\mathbb{F} = \mathbb{Z}_7[x]/(f) \), a field. Let \(\alpha = [x]_f \).
 a) What are the possible orders of the elements of \(\mathbb{F}^\times \)?
 b) What is the order of \(\alpha \) in \(\mathbb{F}^\times \)?
 c) What is the order of \(\alpha^{75} \) in \(\mathbb{F}^\times \)?
 d) What is the order of \(3\alpha \) in \(\mathbb{F}^\times \)?
 e) What is the order of \(\alpha + 1 \) in \(\mathbb{F}^\times \)?