1. Let \(f = 7x^5 + 2x^4 + 8x^2 + 15 \). List all the candidates for rational roots of \(f \), as identified by the theorem on rational roots.

2. Give a prime factorization in \(\mathbb{Z}_2[x] \) for the following polynomial. Give proofs that the factors are prime. (You may use the results from class on the irreducibles in degrees \(\leq 3 \).)

\[f = x^7 + x^6 + x^5 + x^4 + x^3 + x + 1 \]

3. Let \(f = x^3 + 7x + 7 \). In which of the following is \(f \) irreducible?
 a) \(\mathbb{Q}[x] \)
 b) \(\mathbb{Z}_2[x] \)
 c) \(\mathbb{Z}_3[x] \)
 d) \(\mathbb{Z}_5[x] \)
 e) \(\mathbb{R}[x] \)

4. Let \(f = x^4 + x^3 + 1 \in \mathbb{Z}_2[x] \), and let \(F = \mathbb{Z}_2[x]/(f) \), a field. Let \(\alpha = [x]_f \).
 a) What are the possible orders of the elements of \(F^\times \)?
 b) What is the order of \(\alpha \) in \(F^\times \)?
 c) What is the order of \(\alpha + 1 \) in \(F^\times \)?
 d) Find a primitive element of \(F \).

5. Let \(f = x^2 - 3 \in \mathbb{Z}_7[x] \), and let \(F = \mathbb{Z}_7[x]/(f) \), a field. Let \(\alpha = [x]_f \).
 a) What are the possible orders of the elements of \(F^\times \)?
 b) What is the order of \(\alpha \)?
 c) What is the order of \(2\alpha \)?
 d) What is the order of \(\alpha + 1 \)?