1. Use the Euclidean Algorithm to find $(5568, 7266)$, and find a solution to Bezout's identity.

Solution:

\[
\begin{align*}
7266 &= 5568 + 1698 \\
5568 &= 3 \cdot 1698 + 474 \\
1698 &= 3 \cdot 474 + 276 \\
474 &= 276 + 198 \\
276 &= 198 + 78 \\
198 &= 2 \cdot 78 + 42 \\
78 &= 42 + 36 \\
42 &= 36 + 6 \\
36 &= 6 \cdot 6 + 0
\end{align*}
\]

\[
\begin{align*}
5568 &= 3 \cdot 1698 + 474 \\
1698 &= 3 \cdot 474 + 276 \\
474 &= 276 + 198 \\
276 &= 198 + 78 \\
198 &= 2 \cdot 78 + 42 \\
78 &= 42 + 36 \\
42 &= 36 + 6 \\
36 &= 6 \cdot 6 + 0
\end{align*}
\]

2. True or False. If true say why. If false, give a counterexample.

a) $ax \equiv b \mod 77$ has a unique solution mod 77 provided that $(a, 77) | b$. Solution: False. The solution is not unique if $(a, 77) \neq 1$. A counterexample is given by $a = 14$, $b = 7$, where there are 7 solutions, including 6 and 17.

b) If $a \neq 0 \mod 21$, and if $ax \equiv ay \mod 21$, then $x \equiv y \mod \frac{21}{(21, y)}$. Solution: False. A counterexample is given by $a = 3$, $y = 1$ and $x = 8$.

3. Let $a = 2^53^64^75^86^9$ and $b = 2^93^84^55^63^9$. Give prime decompositions for the following:

a) ab

b) $[a, b]$

c) (a, b)

Solution: Here $a = 2^{28}3^{15}5^8$, $b = 2^{20}3^{11}5^5$, so $ab = 2^{48}3^{26}5^{13}$, $[a, b] = a$ and $(a, b) = b$.

4. Find all solutions or say why none exist:
 a) \(75x + 100y = 35\). \textbf{Solution:} \((75, 100) = 25 \not| 35\), so there are no solutions.

 b) \(75x + 35y = 100\). \textbf{Solution:} \((75, 35) = 5|100\), so solutions exist. We first solve Bezout’s identity for 75 and 35, getting
 \[5 = 75 - 2 \cdot 35.\]
 Multiplying through by 20, we get
 \[100 = 20 \cdot 75 + (-40)35,\]
 The general solution is now given by
 \[
 \begin{cases}
 x = 20 + 7n \\
 y = -40 - 15n
 \end{cases}
 \text{ for } n \in \mathbb{Z}.
 \]

5. Suppose \((a, b) = 40\), \([a, b] = 3600\). What are the possible values for \(a\) and \(b\) (as a pair)?
 \textbf{Solution:} Here, \((a, b) = 2^33^05^1\) and \([a, b] = 2^43^25^2\). Thus, \(a = 2^r3^r5^r\) and \(b = 2^s3^s5^s\), where
 \[
 \begin{align*}
 \min(r_1, s_1) &= 3 & \max(r_1, s_1) &= 4 \\
 \min(r_2, s_2) &= 0 & \max(r_2, s_2) &= 2 \\
 \min(r_3, s_3) &= 1 & \max(r_3, s_3) &= 2.
 \end{align*}
 \]
 We may fix the exponents for one prime in \(a\) and \(b\) and let the others vary. So we fix \(r_1 = 3\) and \(s_1 = 4\).

 \textit{Case 1:} \(r_2 = 0\) and \(r_3 = 1\). Here, \(a = 40, b = 3600\).
 \textit{Case 2:} \(r_2 = 0\) and \(r_3 = 2\). Here, \(a = 200, b = 720\).
 \textit{Case 3:} \(r_2 = 2\) and \(r_3 = 1\). Here, \(a = 360, b = 400\).
 \textit{Case 4:} \(r_2 = 2\) and \(r_3 = 2\). Here, \(a = 1800, b = 80\).

6. Find all nonnegative solutions less than the modulus or show why no solutions exist:
 a) \(24x \equiv 22 \mod 150\). \textbf{Solution:} \((24, 150) = 6 \not| 22\), so there are no solutions.

 b) \(42x \equiv 24 \mod 150\). \textbf{Solution:} \((42, 150) = 6|24\), so there are solutions. We first divide through by \((42, 150)\), getting
 \[7x \equiv 4 \mod 25.\]
 We now solve Bezout’s identity for 7 and 25, getting
 \[1 = 25 + (-7)7.\]
Thus, the inverse of 7 mod 25 is -7. So we multiply (1) by -7, getting

\begin{align*}
(2) & \quad -7 \cdot 7x \equiv -7 \cdot 4 \mod 25, \\
(3) & \quad x \equiv -28 \mod 25.
\end{align*}

But $-28 \equiv -3 \equiv 22 \mod 25$, so

\begin{align*}
x & \equiv 22, 22 + 25, 22 + 50, 22 + 75, 22 + 100, 22 + 125 \mod 150 \\
& \equiv 22, 47, 72, 97, 122, 147.
\end{align*}

7. a) What are the elements of \mathbb{Z}_{18}^\times?

 Solution: $\{1, 5, 7, 11, 13, 17\}$.

b) What is the inverse of 13 in \mathbb{Z}_{18}^\times?

 Solution: Solving Bezout’s identity for 13 and 18, we get
 \begin{align*}
 1 & = -5 \cdot 18 + 7 \cdot 13, \text{ so} \\
 1 & \equiv 7 \cdot 13 \mod 18.
 \end{align*}

 Thus, $13^{-1} = 7$.