Show all of your work.

1. Prove that
\[
1^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}
\]
for all \(n \geq 1 \).

2. Use the Euclidean Algorithm to find \((7596, 2436)\), and find a solution to Bezout’s identity.

3. True or False. If false, give a counterexample.
 a) If \(a \not\equiv 0 \mod 33 \), and if \(ax \equiv ay \mod 33 \), then \(x \equiv y \mod 33/(33, x) \).
 b) If \(a|c \) and \(b|c \), then \((ab)|c \).

4. Let \(a = 2^{10}3^24^25^76^5 \) and \(b = 2^63^34^55^46^4 \). Give prime decompositions for the following:
 a) \(ab \)
 b) \([a, b] \)
 c) \((a, b) \)

5. Find all solutions or say why none exist:
 a) \(60x + 45y = 35 \)
 b) \(60x + 35y = 45 \)

6. Suppose \((a, b) = 20\), \([a, b] = 1800\). What are the possible values for \(a \) and \(b \) (as a pair)?

7. Find all nonnegative solutions less than the modulus or show why no solutions exist:
 a) \(68x \equiv 20 \mod 100 \)
 b) \(20x \equiv 68 \mod 100 \)