Show all of your work.

1. Prove that

 \[1 + \cdots + n = \frac{n(n + 1)}{2} \]

 for all \(n \geq 1 \).

2. Use the Euclidean Algorithm to find \((10013, 3325)\), and find a solution to Bezout’s identity.

3. True or False. If false, give a counterexample.
 a) If \(a \not\equiv 0 \mod m \), and if \(ax \equiv ay \mod m \), then \(x \equiv y \mod \frac{m}{(m, x)} \).
 b) If \(a \not\equiv 0 \mod m \), and if \(ax \equiv b \mod m \) has a solution, then the solution is unique.

4. Let \(a = 2^73^24^25^76^5 \) and \(b = 2^53^34^55^46^3 \). Give prime decompositions for the following:
 a) \(ab \)
 b) \([a, b]\)
 c) \((a, b)\)

5. Find all solutions or say why none exist:
 a) \(48x + 40y = 20 \)
 b) \(48x + 20y = 40 \)

6. Suppose \((a, b) = 12\), \([a, b] = 1800\). What are the possible values for \(a\) and \(b\) (as a pair)?

7. Find all non-negative solutions less than the modulus or show why no solutions exist:
 a) \(65x \equiv 15 \mod 160 \)
 b) \(60x \equiv 10 \mod 160 \)