1. Does Q_3 have a Hamilton cycle? If not, show why not. If so, draw one.

Solution: Here is Q_3:

And here is a Hamilton cycle in it:

2. Does Q_3 have a Euler circuit? Give reasons for your answer.

Solution: No. The vertices of Q_3 all have degree 3. A multi-graph has an Euler circuit if and only if every vertex has even degree.
3. Find three non-isomorphic spanning trees for Q_3. (Hint: count the number of vertices that have degree three in the tree.)

SOLUTION: We can find one by removing an edge from the Hamilton cycle in Question 1:

![Diagram of a spanning tree]

Here are two more:

![Diagram of two more spanning trees]

4. Which complete bipartite graph contains Q_3? Color the vertices of Q_3 to show it.

SOLUTION:

![Diagram of a complete bipartite graph]

There are four of each color, so Q_3 embeds in $K_{4,4}$.
5. a) Find all non-isomorphic trees with 7 vertices.
 b) For each one, show which complete bipartite graph contains it
 (by coloring the vertices).

SOLUTION:

(1) \[\bullet \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \]

(2) \[\bullet \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \]

(3) \[\bullet \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \]

(4) \[\bullet \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \]

(5) \[\bullet \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \]

(6) \[\bullet \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \]

(7) \[\bullet \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \]

(8) \[\bullet \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \]
Counting dots, we see that (1)–(5), (8) and (9) lie in $K_{4,3} \cong K_{3,4}$, while (6), (7) and (10) lie in $K_{5,2} \cong K_{2,5}$. Finally, (11) lies in $K_{6,1} \cong K_{1,6}$.