1. Let \(A = \begin{bmatrix} 13 & 30 & 30 \\ -3 & -8 & -6 \\ -3 & -6 & -8 \end{bmatrix} \).

Calculation shows that \(\text{ch}_A(\lambda) = (-2 - \lambda)^2(1 - \lambda) \).

a) For each eigenvalue of \(A \), find a basis for the associated eigenspace.

b) Is \(A \) diagonalizable? If not, why not? If so, find a matrix \(P \) such that \(P^{-1}AP \) is diagonal, and display the diagonal matrix \(P^{-1}AP \).

2. Let \(A = \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix} \)

a) For each eigenvalue of \(A \), find a basis for the associated eigenspace.

b) Is \(A \) diagonalizable? If not, why not? If so, find a matrix \(P \) such that \(P^{-1}AP \) is diagonal, and display the diagonal matrix \(P^{-1}AP \).

c) Let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be given by \(T(x) = Ax \) for all \(x \in \mathbb{R}^2 \). Let \(\mathcal{B} = \{v_1, v_2\} \) be the basis given by \(v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \).

What is the matrix \([T]_\mathcal{B}\) of \(T \) with respect to \(\mathcal{B} \)?

3. Let \(T : P_2 \rightarrow P_2 \) be given by \(T(p) = p(3 - 5x) \).

a) What is the matrix of \(T \) with respect to the standard basis \(\mathcal{E} = \{1, x, x^2\} \)?

b) What is \(\det(T) \)?

c) What is the trace of \(T \)?

d) What is the characteristic polynomial \(\text{ch}_T(\lambda) \)?

e) Give a basis for each eigenspace of \(T \).

f) Is \(T \) diagonalizable? If so, find a basis \(\mathcal{B} \) such that \([T]_\mathcal{B}\) is diagonal, and display the diagonal matrix \([T]_\mathcal{B}\).