1. Let \(A = \begin{bmatrix} 14 & 4 \\ -25 & -6 \end{bmatrix} \).

a) What is the characteristic polynomial \(\chi_A(\lambda) \)?

b) For each eigenvalue of \(A \), find a basis for the associated eigenspace.

c) Is \(A \) diagonalizable? If so, find a matrix \(P \) such that \(P^{-1}AP \)

is diagonal, and display the diagonal matrix \(P^{-1}AP \).

2. Let \(A = \begin{bmatrix} 10 & 0 & 9 \\ 30 & 1 & 30 \\ -12 & 0 & -11 \end{bmatrix} \). Then the characteristic polynomial

of \(A \) is \((\lambda - 1)^2(\lambda + 2) \).

a) For each eigenvalue of \(A \), find a basis for the associated eigenspace.

b) Is \(A \) diagonalizable? If so, find a matrix \(P \) such that \(P^{-1}AP \)

is diagonal, and display the diagonal matrix \(P^{-1}AP \).

3. Let \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) be the linear transformation

\[T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} 3x_1 - 7x_2 \\ 5x_1 + 4x_2 \end{bmatrix}. \]

a) What is the matrix for \(T \) with respect to the standard basis \(B = \{ e_1, e_2 \} \) of \(\mathbb{R}^2 \)?

b) Let \(B' = \{ v_2, v_2 \} \) be the basis given by \(v_1 = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \).

What is the matrix \([T]_{B'} \) of \(T \) with respect to \(B' \)? (Use the

transition matrix \(P = [I]_{B,B'} \) from \(B' \) to \(B \) to find it.)

4. Let \(T : P_2 \to P_2 \) be given by \(T(p) = p(3-2x) \).

a) What is the matrix of \(T \) with respect to the standard basis \(B = \{ 1, x, x^2 \} \)?

b) What is \(\det(T) \)?

c) What are the rank and nullity of \(T \)?

d) What is the characteristic polynomial \(\chi_T(\lambda) \)?

e) What are the eigenvalues of \(T \)?

f) Is \(T \) diagonalizable?