1. Let \(A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \).

a) Show that \(A^2 - 2A + I = 0 \).

b) Show that \(2I - A = A^{-1} \).

2. Let \(A = \begin{bmatrix} 3 & 7 \\ 0 & 1 \end{bmatrix} \).

a) Find elementary matrices \(E_1 \) and \(E_2 \) such that \(E_2 E_1 A = I \).

b) Write \(A^{-1} \) as a product of two elementary matrices.

c) Write \(A \) as a product of two elementary matrices.

3. Let \(A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 2 & 3 & 1 \end{bmatrix} \).

a) Find \(A^{-1} \).

b) Use \(A^{-1} \) to find the solution of \(Ax = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \).

4. Let \(A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 4 & 1 \\ 1 & -1 & -4 \end{bmatrix} \).

a) For which values of \(b_1, b_2, b_3 \) is the system \(Ax = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \) consistent?

b) Find the general solution whenever the system is consistent.

5. Let \(A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \). Recall that that \(Ax = 2x \) can be rewritten as \((A - 2I)x = 0 \). Use this to solve \(Ax = 2x \).