Section 18: confidence interval \& hypothesis testing using sample means (sigma unknown)

1. A simple random sample of 40 packages of Chips Ahoy cookies reveals an average of 1261.6 chocolate chips per package, with a standard deviation of 117.6 chips. (a) Find $95 \%, 90 \%$, and 99% confidence intervals for the mean number of chocolate chips in all Chips Ahoy packages.

$$
\begin{aligned}
& d f=n-1=39 \quad 95 \% \text { confidence: } t=2.023 \\
& \bar{x} \pm t \frac{s}{\sqrt{n}}=1261.6 \pm 2.023 \frac{117.6}{\sqrt{40}}=1261.6 \pm 37.62
\end{aligned}
$$

(1223.98, 1299.22)
90% confidence: $t=1.685$

$$
\bar{x} \pm t \frac{s}{\sqrt{n}}=1261.6 \pm 1.685 \frac{117.6}{\sqrt{40}}=1261.6 \pm 31.33
$$

(1230.27, 1292.93)
99% confidence: $t=2.708$

$$
\bar{x} \pm t \frac{s}{\sqrt{n}}=1261.6 \pm 2.708 \frac{117.6}{\sqrt{40}}=1261.6 \pm 50.35
$$

(1292.93, 1311.95)
(b) The company claims that Chips Ahoy packages contain on average 1300 chocolate chips. Do we have evidence at the $10 \%, 5 \%, 1 \%$ levels that they're exaggerating?

$$
\begin{gathered}
H_{0}: \mu=1300 \\
H_{a}: \mu<1300 \\
t=\frac{\bar{x}-\mu}{\frac{S}{\sqrt{n}}}=\frac{1261.6-1300}{\frac{117.6}{\sqrt{40}}}=-2.065 \\
1 \text { tail: } 2.426>2.065>2.023 \\
\mathrm{p}-\text { value: } 0.01<P<0.025 \quad \text { Thus: } \\
P<.10 \quad \text { reject } H_{0}, \text { evidence of } H_{a}
\end{gathered}
$$

$$
\begin{gathered}
P<.05 \text { reject } H_{0} \text {, evidence of } H_{a} \\
P \nless .01 \text { do not reject } H_{0} \text {, no evidence of } H_{a}
\end{gathered}
$$

(c) Jack claims that Chips Ahoy packages contain on average 1300 chocolate chips. Do we have evidence at the $10 \%, 5 \%, 1 \%$ levels that he is mistaken?

$$
\begin{array}{cl}
H_{a}: \mu \neq 1300 \\
2 \text { tail: } & 2.426>2.065>2.023 \\
\mathrm{p}-\text { value: } & 0.02<P<0.05 \quad \text { Thus: } \\
P<.10 \quad \text { reject } H_{0}, \text { evidence of } H_{a} \\
P<.05 & \text { reject } H_{0}, \text { evidence of } H_{a} \\
P<.01 \quad \text { do not reject } H_{0}, \text { no evidence of } H_{a}
\end{array}
$$

2. How many licks does it take to get to the Tootsie Roll center of a Tootsie Pop? A simple random sample of 22 attempts yields an average of 508 licks per pop, with a standard deviation of 164 licks. (a) Find $95 \%, 90 \%$, and 99% confidence intervals for the mean number of licks for all pops.

$$
\begin{gathered}
d f=n-1=21 \quad 95 \% \text { confidence: } t=2.080 \\
\bar{x} \pm t \frac{s}{\sqrt{n}}=508 \pm 2.080 \frac{164}{\sqrt{22}}=508 \pm 72.73 \\
(435.27,580.73) \\
90 \% \text { confidence: } t=1.721 \\
\bar{x} \pm t \frac{s}{\sqrt{n}}=508 \pm 1.721 \frac{164}{\sqrt{22}}=508 \pm 60.17 \\
(447.83,568.17)
\end{gathered}
$$

99% confidence: $t=2.831$

$$
\bar{x} \pm t \frac{s}{\sqrt{n}}=508 \pm 2.831 \frac{164}{\sqrt{22}}=508 \pm 98.99
$$

(b) Mr. Owl claims that it takes on average 500 licks. Do we have evidence at the $10 \%, 5 \%, 1 \%$ levels that he's underestimating? Do we have evidence at the $10 \%, 5 \%, 1 \%$ levels that he's mistaken?

$$
\begin{aligned}
& H_{0}: \mu=500 \\
& H_{a}: \mu>500 \\
& t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{508-500}{\frac{164}{\sqrt{22}}}=0.229 \\
& 1 \text { tail: } \quad 0.686>0.229 \\
& \text { p-value: } 0.25<P \quad \text { Thus: } \\
& P \nless .10 \text { do not reject } H_{0} \text {, no evidence of } H_{a} \\
& P \nless .05 \text { do not reject } H_{0} \text {, no evidence of } H_{a} \\
& P \nless .01 \text { do not reject } H_{0} \text {, no evidence of } H_{a} \\
& H_{a}: \mu \neq 500 \\
& 2 \text { tail: } 0.686>0.229 \\
& \text { p-value: } 0.50<P \quad \text { Thus: } \\
& P \nless .10 \text { do not reject } H_{0} \text {, no evidence of } H_{a} \\
& P \nless .05 \text { do not reject } H_{0} \text {, no evidence of } H_{a} \\
& P \nless .01 \text { do not reject } H_{0} \text {, no evidence of } H_{a}
\end{aligned}
$$

(c) Mr. Turtle claims that it takes on average 580 licks. Do we have evidence at the $10 \%, 5 \%$, 1% levels that he's overestimating? Do we have evidence at the $10 \%, 5 \%, 1 \%$ levels that he's mistaken?

$$
\begin{gathered}
H_{0}: \mu=580 \\
H_{a}: \mu<580 \\
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{508-580}{\frac{164}{\sqrt{22}}}=-2.059
\end{gathered}
$$

1 tail: $2.080>2.059>1.721$
p-value: $0.025<P<0.05$ Thus:
$P<.10$ reject H_{0}, evidence of H_{a}
$P<.05$ reject H_{0}, evidence of H_{a}
$P \nless .01$ do not reject H_{0}, no evidence of H_{a}
$H_{a}: \mu \neq 580$
2 tail: $2.080>2.059>1.721$
p - value: $0.05<P<0.10$ Thus:
$P<.10$ reject H_{0}, evidence of H_{a}
$P \nless .05$ do not reject H_{0}, no evidence of H_{a}
$P \nless .01$ do not reject H_{0}, no evidence of H_{a}
3. What is the average commute time for people going to work in the northeast? A simple random sample of 30 people who drive to work in the northeast results in a mean time of 27.97 minutes with a standard deviation of 10.04 minutes. (a) Find $80 \%, 98 \%$, and 95% confidence intervals for the average commute time in the northeast.

$$
\begin{align*}
& d f=n-1=29 \quad 80 \% \text { confidence: } t=1.311 \\
& \bar{x} \pm t \frac{s}{\sqrt{n}}=27.97 \pm 1.311 \frac{10.04}{\sqrt{30}}=27.97 \pm 2.40 \tag{25.57,30.37}
\end{align*}
$$

98% confidence: $t=2.462$

$$
\begin{equation*}
\bar{x} \pm t \frac{s}{\sqrt{n}}=27.97 \pm 2.462 \frac{10.04}{\sqrt{30}}=27.97 \pm 5.51 \tag{23.46,32.48}
\end{equation*}
$$

95% confidence: $t=2.045$

$$
\bar{x} \pm t \frac{s}{\sqrt{n}}=27.97 \pm 2.045 \frac{10.04}{\sqrt{30}}=27.97 \pm 4.51
$$

(b) Jack claims that on average in takes 32 minutes for someone in the northeast to get to work.

Do we have evidence at the $10 \%, 5 \%, 1 \%$ levels that he's overestimating? Do we have evidence at the $10 \%, 5 \%, 1 \%$ levels that he's mistaken?

$$
\begin{gathered}
H_{0}: \mu=32 \\
H_{a}: \mu<32 \\
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{27.97-32}{\frac{10.04}{\sqrt{30}}}=-2.199 \\
1 \text { tail: } 2.462>2.199>2.045 \\
\text { p }- \text { value: } 0.01<P<0.025 \quad \text { Thus: } \\
P<.10 \quad \text { reject } H_{0}, \text { evidence of } H_{a} \\
P<.05 \quad \text { reject } H_{0}, \text { evidence of } H_{a} \\
P<.01 \quad \text { do not reject } H_{0}, \text { no evidence of } H_{a} \\
\\
H_{a}: \mu \neq 32 \\
2 \text { tail: } 2.462>2.199>2.045 \\
p-\text { value: } 0.02<P<0.05 \quad \text { Thus: } \\
P<.10 \quad \text { reject } H_{0}, \text { evidence of } H_{a} \\
P<.05 \quad \text { reject } H_{0}, \text { evidence of } H_{a} \\
P \& .01 \\
\text { do not reject } H_{0}, \text { no evidence of } H_{a}
\end{gathered}
$$

(c) Sam claims that on average in takes 25 minutes for someone in the northeast to get to work. Do we have evidence at the $10 \%, 5 \%, 1 \%$ levels that he's underestimating? Do we have evidence at the $10 \%, 5 \%, 1 \%$ levels that he's mistaken?

$$
\begin{aligned}
& H_{0}: \mu=25 \\
& H_{a}: \mu>25
\end{aligned}
$$

$$
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{27.97-25}{\frac{10.04}{\sqrt{30}}}=1.620
$$

1 tail: $1.699>1.620>1.479$
p-value: $0.05<P<0.075$ Thus:
$P<.10$ reject H_{0}, evidence of H_{a} $P \nless .05$ do not reject H_{0}, no evidence of H_{a} $P \nless .01$ do not reject H_{0}, no evidence of H_{a}

$$
H_{a}: \mu \neq 25
$$

2 tail: $1.699>1.620>1.479$
p-value: $0.10<P<0.15$ Thus:
$P \nless .10$ do not reject H_{0}, no evidence of H_{a}
$P \nless .05$ do not reject H_{0}, no evidence of H_{a}
$P \nless .01$ do not reject H_{0}, no evidence of H_{a}
4. Jonathan Kent has been using a certain brand of chicken feed for years, and on average his chickens weigh 62.2 ounces. He tests a new type of chicken feed on 9 chickens, and their average weight is 64.38 ounces, with a standard deviation of 2.065 ounces. (a) Find $99 \%, 95 \%$, and 85% confidence intervals for the average weight that would be gained by all chickens using the new feed.

$$
\begin{aligned}
& d f=n-1=8 \quad 99 \% \text { confidence: } t=3.355 \\
& \bar{x} \pm t \frac{s}{\sqrt{n}}=64.38 \pm 3.355 \frac{2.065}{\sqrt{9}}=64.38 \pm 2.31
\end{aligned}
$$

$(62.07,66.69)$
95% confidence: $t=2.306$

$$
\begin{equation*}
\bar{x} \pm t \frac{s}{\sqrt{n}}=64.38 \pm 2.306 \frac{2.065}{\sqrt{9}}=64.38 \pm 1.59 \tag{62.79,65.97}
\end{equation*}
$$

$$
\begin{gathered}
85 \% \text { confidence: } t=1.592 \\
\bar{x} \pm t \frac{s}{\sqrt{n}}=64.38 \pm 1.592 \frac{2.065}{\sqrt{9}}=64.38 \pm 1.10
\end{gathered}
$$

$(63.28,65.48)$
(b) Does Jonathan have evidence at the $10 \%, 5 \%, 1 \%$ levels that the new chicken feed is better than the old brand?

$$
\begin{gathered}
H_{0}: \mu=62.2 \\
H_{a}: \mu>62.2 \\
t=\frac{\bar{x}-\mu}{\frac{S}{\sqrt{n}}}=\frac{64.38-62.2}{\frac{2.065}{\sqrt{9}}}=3.167 \\
1 \text { tail: } 3.355>3.167>2.896 \\
\text { p }- \text { value: } \\
\hline P<.005<P<0.01 \quad \text { Thus: } \\
P<.05 \quad \text { reject } H_{0}, \text { evidence of } H_{a} \\
P<.01 \quad \text { reject } H_{0}, \text { evidence of } H_{a}
\end{gathered}
$$

5. A certain comedian measures the effectiveness of his routine by the number of times he has to wait for laughter to subside before continuing; his old routine averaged 63.2 times. He is trying a new routine, and of its 15 performances, the average number of times he had to wait was 69.53 times, with a standard deviation of 19.3 times. (a) Find $99 \%, 95 \%, 90 \%$ confidence intervals for the average number of waiting times for all possible performance of his new routine (i.e., his measure of how good it is).

$$
\begin{align*}
& d f=n-1=14 \quad 99 \% \text { confidence: } t=2.977 \\
& \bar{x} \pm t \frac{s}{\sqrt{n}}=69.53 \pm 2.977 \frac{19.3}{\sqrt{15}}=69.53 \pm 14.84 \tag{54.69,84.37}
\end{align*}
$$

$$
\bar{x} \pm t \frac{s}{\sqrt{n}}=69.53 \pm 2.145 \frac{19.3}{\sqrt{15}}=69.53 \pm 10.69
$$

(58.84, 80.22)
90% confidence: $t=1.761$

$$
\begin{equation*}
\bar{x} \pm t \frac{s}{\sqrt{n}}=69.53 \pm 1.761 \frac{19.3}{\sqrt{15}}=69.53 \pm 8.78 \tag{60.75,78.31}
\end{equation*}
$$

(b) Does he have evidence at the $10 \%, 5 \%, 1 \%$ levels that his new routine is better?

$$
\begin{gathered}
H_{0}: \mu=63.2 \\
H_{a}: \mu>63.2 \\
t=\frac{\bar{x}-\mu}{\frac{S}{\sqrt{n}}}=\frac{69.53-63.2}{\frac{19.3}{\sqrt{15}}}=1.270 \\
1 \text { tail: } 1.345>1.270>1.200 \\
\mathrm{p}-\text { value: } 0.10<P<0.125 \quad \text { Thus: } \\
P \nless .10 \quad \text { do not reject } H_{0}, \text { no evidence of } H_{a} \\
P<.05 \quad \text { do not reject } H_{0}, \text { no evidence of } H_{a} \\
P \nless .01 \quad \text { do not reject } H_{0}, \text { no evidence of } H_{a}
\end{gathered}
$$

6. A simple random sample of 33 brown M\&M's reveals that their average weight is 0.9128 grams with a standard deviation of 0.0395 grams. (a) Find $80 \%, 90 \%, 95 \%, 99 \%$ confidence intervals for the true average weight of (all) brown M\&M's.

$$
\begin{gathered}
d f=n-1=32 \quad 80 \% \text { confidence: } t=1.309 \\
\bar{x} \pm t \frac{s}{\sqrt{n}}=0.9128 \pm 1.309 \frac{0.0395}{\sqrt{33}}=0.9128 \pm 0.0090
\end{gathered}
$$

$$
(0.9038,0.9218)
$$

$$
\begin{equation*}
\bar{x} \pm t \frac{s}{\sqrt{n}}=0.9128 \pm 1.309 \frac{0.0395}{\sqrt{33}}=0.9128 \pm 0.0116 \tag{0.9012,0.9244}
\end{equation*}
$$

95% confidence: $t=2.037$
$\bar{x} \pm t \frac{s}{\sqrt{n}}=0.9128 \pm 2.037 \frac{0.0395}{\sqrt{33}}=0.9128 \pm 0.0140$
($0.8988,0.9268$)
99% confidence: $t=2.738$

$$
\begin{equation*}
\bar{x} \pm t \frac{s}{\sqrt{n}}=0.9128 \pm 2.738 \frac{0.0395}{\sqrt{33}}=0.9128 \pm 0.0188 \tag{0.8940,0.9316}
\end{equation*}
$$

(b) Horatio, a lover of brown M\&M's with too much time on his hands, grumbles that he believes that on average, a brown M\&M weighs only 0.9085 grams. Do we have evidence that Horatio is underestimating the average weight of brown M\&M's?

$$
\begin{gathered}
H_{0}: \mu=0.9085 \\
H_{a}: \mu>0.9085 \\
t=\frac{\bar{x}-\mu}{\frac{S}{\sqrt{n}}}=\frac{0.9128-0.9085}{\frac{0.0395}{\sqrt{33}}}=0.625 \\
1 \text { tail: } 0.682>0.625 \\
\mathrm{p}-\text { value: } 0.25<P \quad \text { Thus: } \\
P \nless .10 \quad \text { do not reject } H_{0}, \text { no evidence of } H_{a} \\
P \nless .05 \quad \text { do not reject } H_{0}, \text { no evidence of } H_{a} \\
P \nless .01 \quad \text { do not reject } H_{0}, \text { no evidence of } H_{a}
\end{gathered}
$$

7. A simple random sample of 20 statistics students during a statistics exam gives an average pulse rate 74.4 with a standard deviation of 10 . (a) Find $90 \%, 95 \%, 99 \%$ confidence intervals for the average pulse rate of all statistics students during an exam.

$$
\begin{gathered}
d f=n-1=19 \quad 90 \% \text { confidence: } t=1.729 \\
\bar{x} \pm t \frac{s}{\sqrt{n}}=74.4 \pm 1.729 \frac{10}{\sqrt{20}}=74.4 \pm 3.87
\end{gathered}
$$

(70.53, 78.27)
95% confidence: $t=2.093$

$$
\bar{x} \pm t \frac{s}{\sqrt{n}}=74.4 \pm 2.093 \frac{10}{\sqrt{20}}=74.4 \pm 4.68
$$

(69.72, 79.08)
99% confidence: $t=2.861$

$$
\bar{x} \pm t \frac{s}{\sqrt{n}}=74.4 \pm 2.861 \frac{10}{\sqrt{20}}=74.4 \pm 6.40
$$

(68.00, 80.80)
(b) If a good exercise regimen would give such students a pulse rate of 60 , do we have evidence at the $10 \%, 5 \%, 1 \%$ levels that a statistics exam has a greater effect on pulse rate than such exercise?

$$
\begin{gathered}
H_{0}: \mu=60 \\
H_{a}: \mu>60 \\
t=\frac{\bar{x}-\mu}{\frac{S}{\sqrt{n}}}=\frac{74.4-60}{\frac{10}{\sqrt{20}}}=6.440 \\
1 \text { tail: } 3.883>6.440 \\
\text { p }- \text { value: } P<0.0005 \quad \text { Thus: } \\
P<.10 \quad \text { reject } H_{0}, \text { evidence of } H_{a} \\
P<.05 \quad \text { reject } H_{0}, \text { evidence of } H_{a} \\
P<.01 \quad \text { reject } H_{0}, \text { evidence of } H_{a}
\end{gathered}
$$

